Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/sched_ext/include/scx/common.bpf.h
29271 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
4
* Copyright (c) 2022 Tejun Heo <[email protected]>
5
* Copyright (c) 2022 David Vernet <[email protected]>
6
*/
7
#ifndef __SCX_COMMON_BPF_H
8
#define __SCX_COMMON_BPF_H
9
10
/*
11
* The generated kfunc prototypes in vmlinux.h are missing address space
12
* attributes which cause build failures. For now, suppress the generated
13
* prototypes. See https://github.com/sched-ext/scx/issues/1111.
14
*/
15
#define BPF_NO_KFUNC_PROTOTYPES
16
17
#ifdef LSP
18
#define __bpf__
19
#include "../vmlinux.h"
20
#else
21
#include "vmlinux.h"
22
#endif
23
24
#include <bpf/bpf_helpers.h>
25
#include <bpf/bpf_tracing.h>
26
#include <asm-generic/errno.h>
27
#include "user_exit_info.bpf.h"
28
#include "enum_defs.autogen.h"
29
30
#define PF_IDLE 0x00000002 /* I am an IDLE thread */
31
#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
32
#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
33
#define PF_KCOMPACTD 0x00010000 /* I am kcompactd */
34
#define PF_KSWAPD 0x00020000 /* I am kswapd */
35
#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
36
#define PF_EXITING 0x00000004
37
#define CLOCK_MONOTONIC 1
38
39
#ifndef NR_CPUS
40
#define NR_CPUS 1024
41
#endif
42
43
#ifndef NUMA_NO_NODE
44
#define NUMA_NO_NODE (-1)
45
#endif
46
47
extern int LINUX_KERNEL_VERSION __kconfig;
48
extern const char CONFIG_CC_VERSION_TEXT[64] __kconfig __weak;
49
extern const char CONFIG_LOCALVERSION[64] __kconfig __weak;
50
51
/*
52
* Earlier versions of clang/pahole lost upper 32bits in 64bit enums which can
53
* lead to really confusing misbehaviors. Let's trigger a build failure.
54
*/
55
static inline void ___vmlinux_h_sanity_check___(void)
56
{
57
_Static_assert(SCX_DSQ_FLAG_BUILTIN,
58
"bpftool generated vmlinux.h is missing high bits for 64bit enums, upgrade clang and pahole");
59
}
60
61
s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) __ksym;
62
s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) __ksym;
63
s32 scx_bpf_select_cpu_and(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
64
const struct cpumask *cpus_allowed, u64 flags) __ksym __weak;
65
void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, u64 enq_flags) __ksym __weak;
66
void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) __ksym __weak;
67
u32 scx_bpf_dispatch_nr_slots(void) __ksym;
68
void scx_bpf_dispatch_cancel(void) __ksym;
69
bool scx_bpf_dsq_move_to_local(u64 dsq_id) __ksym __weak;
70
void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, u64 slice) __ksym __weak;
71
void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, u64 vtime) __ksym __weak;
72
bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
73
bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
74
u32 scx_bpf_reenqueue_local(void) __ksym;
75
void scx_bpf_kick_cpu(s32 cpu, u64 flags) __ksym;
76
s32 scx_bpf_dsq_nr_queued(u64 dsq_id) __ksym;
77
void scx_bpf_destroy_dsq(u64 dsq_id) __ksym;
78
int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, u64 flags) __ksym __weak;
79
struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) __ksym __weak;
80
void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) __ksym __weak;
81
void scx_bpf_exit_bstr(s64 exit_code, char *fmt, unsigned long long *data, u32 data__sz) __ksym __weak;
82
void scx_bpf_error_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym;
83
void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym __weak;
84
u32 scx_bpf_cpuperf_cap(s32 cpu) __ksym __weak;
85
u32 scx_bpf_cpuperf_cur(s32 cpu) __ksym __weak;
86
void scx_bpf_cpuperf_set(s32 cpu, u32 perf) __ksym __weak;
87
u32 scx_bpf_nr_node_ids(void) __ksym __weak;
88
u32 scx_bpf_nr_cpu_ids(void) __ksym __weak;
89
int scx_bpf_cpu_node(s32 cpu) __ksym __weak;
90
const struct cpumask *scx_bpf_get_possible_cpumask(void) __ksym __weak;
91
const struct cpumask *scx_bpf_get_online_cpumask(void) __ksym __weak;
92
void scx_bpf_put_cpumask(const struct cpumask *cpumask) __ksym __weak;
93
const struct cpumask *scx_bpf_get_idle_cpumask_node(int node) __ksym __weak;
94
const struct cpumask *scx_bpf_get_idle_cpumask(void) __ksym;
95
const struct cpumask *scx_bpf_get_idle_smtmask_node(int node) __ksym __weak;
96
const struct cpumask *scx_bpf_get_idle_smtmask(void) __ksym;
97
void scx_bpf_put_idle_cpumask(const struct cpumask *cpumask) __ksym;
98
bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) __ksym;
99
s32 scx_bpf_pick_idle_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;
100
s32 scx_bpf_pick_idle_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
101
s32 scx_bpf_pick_any_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;
102
s32 scx_bpf_pick_any_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
103
bool scx_bpf_task_running(const struct task_struct *p) __ksym;
104
s32 scx_bpf_task_cpu(const struct task_struct *p) __ksym;
105
struct rq *scx_bpf_cpu_rq(s32 cpu) __ksym;
106
struct rq *scx_bpf_locked_rq(void) __ksym;
107
struct task_struct *scx_bpf_cpu_curr(s32 cpu) __ksym __weak;
108
struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) __ksym __weak;
109
u64 scx_bpf_now(void) __ksym __weak;
110
void scx_bpf_events(struct scx_event_stats *events, size_t events__sz) __ksym __weak;
111
112
/*
113
* Use the following as @it__iter when calling scx_bpf_dsq_move[_vtime]() from
114
* within bpf_for_each() loops.
115
*/
116
#define BPF_FOR_EACH_ITER (&___it)
117
118
#define scx_read_event(e, name) \
119
(bpf_core_field_exists((e)->name) ? (e)->name : 0)
120
121
static inline __attribute__((format(printf, 1, 2)))
122
void ___scx_bpf_bstr_format_checker(const char *fmt, ...) {}
123
124
#define SCX_STRINGIFY(x) #x
125
#define SCX_TOSTRING(x) SCX_STRINGIFY(x)
126
127
/*
128
* Helper macro for initializing the fmt and variadic argument inputs to both
129
* bstr exit kfuncs. Callers to this function should use ___fmt and ___param to
130
* refer to the initialized list of inputs to the bstr kfunc.
131
*/
132
#define scx_bpf_bstr_preamble(fmt, args...) \
133
static char ___fmt[] = fmt; \
134
/* \
135
* Note that __param[] must have at least one \
136
* element to keep the verifier happy. \
137
*/ \
138
unsigned long long ___param[___bpf_narg(args) ?: 1] = {}; \
139
\
140
_Pragma("GCC diagnostic push") \
141
_Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \
142
___bpf_fill(___param, args); \
143
_Pragma("GCC diagnostic pop")
144
145
/*
146
* scx_bpf_exit() wraps the scx_bpf_exit_bstr() kfunc with variadic arguments
147
* instead of an array of u64. Using this macro will cause the scheduler to
148
* exit cleanly with the specified exit code being passed to user space.
149
*/
150
#define scx_bpf_exit(code, fmt, args...) \
151
({ \
152
scx_bpf_bstr_preamble(fmt, args) \
153
scx_bpf_exit_bstr(code, ___fmt, ___param, sizeof(___param)); \
154
___scx_bpf_bstr_format_checker(fmt, ##args); \
155
})
156
157
/*
158
* scx_bpf_error() wraps the scx_bpf_error_bstr() kfunc with variadic arguments
159
* instead of an array of u64. Invoking this macro will cause the scheduler to
160
* exit in an erroneous state, with diagnostic information being passed to the
161
* user. It appends the file and line number to aid debugging.
162
*/
163
#define scx_bpf_error(fmt, args...) \
164
({ \
165
scx_bpf_bstr_preamble( \
166
__FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args) \
167
scx_bpf_error_bstr(___fmt, ___param, sizeof(___param)); \
168
___scx_bpf_bstr_format_checker( \
169
__FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args); \
170
})
171
172
/*
173
* scx_bpf_dump() wraps the scx_bpf_dump_bstr() kfunc with variadic arguments
174
* instead of an array of u64. To be used from ops.dump() and friends.
175
*/
176
#define scx_bpf_dump(fmt, args...) \
177
({ \
178
scx_bpf_bstr_preamble(fmt, args) \
179
scx_bpf_dump_bstr(___fmt, ___param, sizeof(___param)); \
180
___scx_bpf_bstr_format_checker(fmt, ##args); \
181
})
182
183
/*
184
* scx_bpf_dump_header() is a wrapper around scx_bpf_dump that adds a header
185
* of system information for debugging.
186
*/
187
#define scx_bpf_dump_header() \
188
({ \
189
scx_bpf_dump("kernel: %d.%d.%d %s\ncc: %s\n", \
190
LINUX_KERNEL_VERSION >> 16, \
191
LINUX_KERNEL_VERSION >> 8 & 0xFF, \
192
LINUX_KERNEL_VERSION & 0xFF, \
193
CONFIG_LOCALVERSION, \
194
CONFIG_CC_VERSION_TEXT); \
195
})
196
197
#define BPF_STRUCT_OPS(name, args...) \
198
SEC("struct_ops/"#name) \
199
BPF_PROG(name, ##args)
200
201
#define BPF_STRUCT_OPS_SLEEPABLE(name, args...) \
202
SEC("struct_ops.s/"#name) \
203
BPF_PROG(name, ##args)
204
205
/**
206
* RESIZABLE_ARRAY - Generates annotations for an array that may be resized
207
* @elfsec: the data section of the BPF program in which to place the array
208
* @arr: the name of the array
209
*
210
* libbpf has an API for setting map value sizes. Since data sections (i.e.
211
* bss, data, rodata) themselves are maps, a data section can be resized. If
212
* a data section has an array as its last element, the BTF info for that
213
* array will be adjusted so that length of the array is extended to meet the
214
* new length of the data section. This macro annotates an array to have an
215
* element count of one with the assumption that this array can be resized
216
* within the userspace program. It also annotates the section specifier so
217
* this array exists in a custom sub data section which can be resized
218
* independently.
219
*
220
* See RESIZE_ARRAY() for the userspace convenience macro for resizing an
221
* array declared with RESIZABLE_ARRAY().
222
*/
223
#define RESIZABLE_ARRAY(elfsec, arr) arr[1] SEC("."#elfsec"."#arr)
224
225
/**
226
* MEMBER_VPTR - Obtain the verified pointer to a struct or array member
227
* @base: struct or array to index
228
* @member: dereferenced member (e.g. .field, [idx0][idx1], .field[idx0] ...)
229
*
230
* The verifier often gets confused by the instruction sequence the compiler
231
* generates for indexing struct fields or arrays. This macro forces the
232
* compiler to generate a code sequence which first calculates the byte offset,
233
* checks it against the struct or array size and add that byte offset to
234
* generate the pointer to the member to help the verifier.
235
*
236
* Ideally, we want to abort if the calculated offset is out-of-bounds. However,
237
* BPF currently doesn't support abort, so evaluate to %NULL instead. The caller
238
* must check for %NULL and take appropriate action to appease the verifier. To
239
* avoid confusing the verifier, it's best to check for %NULL and dereference
240
* immediately.
241
*
242
* vptr = MEMBER_VPTR(my_array, [i][j]);
243
* if (!vptr)
244
* return error;
245
* *vptr = new_value;
246
*
247
* sizeof(@base) should encompass the memory area to be accessed and thus can't
248
* be a pointer to the area. Use `MEMBER_VPTR(*ptr, .member)` instead of
249
* `MEMBER_VPTR(ptr, ->member)`.
250
*/
251
#ifndef MEMBER_VPTR
252
#define MEMBER_VPTR(base, member) (typeof((base) member) *) \
253
({ \
254
u64 __base = (u64)&(base); \
255
u64 __addr = (u64)&((base) member) - __base; \
256
_Static_assert(sizeof(base) >= sizeof((base) member), \
257
"@base is smaller than @member, is @base a pointer?"); \
258
asm volatile ( \
259
"if %0 <= %[max] goto +2\n" \
260
"%0 = 0\n" \
261
"goto +1\n" \
262
"%0 += %1\n" \
263
: "+r"(__addr) \
264
: "r"(__base), \
265
[max]"i"(sizeof(base) - sizeof((base) member))); \
266
__addr; \
267
})
268
#endif /* MEMBER_VPTR */
269
270
/**
271
* ARRAY_ELEM_PTR - Obtain the verified pointer to an array element
272
* @arr: array to index into
273
* @i: array index
274
* @n: number of elements in array
275
*
276
* Similar to MEMBER_VPTR() but is intended for use with arrays where the
277
* element count needs to be explicit.
278
* It can be used in cases where a global array is defined with an initial
279
* size but is intended to be be resized before loading the BPF program.
280
* Without this version of the macro, MEMBER_VPTR() will use the compile time
281
* size of the array to compute the max, which will result in rejection by
282
* the verifier.
283
*/
284
#ifndef ARRAY_ELEM_PTR
285
#define ARRAY_ELEM_PTR(arr, i, n) (typeof(arr[i]) *) \
286
({ \
287
u64 __base = (u64)arr; \
288
u64 __addr = (u64)&(arr[i]) - __base; \
289
asm volatile ( \
290
"if %0 <= %[max] goto +2\n" \
291
"%0 = 0\n" \
292
"goto +1\n" \
293
"%0 += %1\n" \
294
: "+r"(__addr) \
295
: "r"(__base), \
296
[max]"r"(sizeof(arr[0]) * ((n) - 1))); \
297
__addr; \
298
})
299
#endif /* ARRAY_ELEM_PTR */
300
301
/*
302
* BPF declarations and helpers
303
*/
304
305
/* list and rbtree */
306
#define __contains(name, node) __attribute__((btf_decl_tag("contains:" #name ":" #node)))
307
#define private(name) SEC(".data." #name) __hidden __attribute__((aligned(8)))
308
309
void *bpf_obj_new_impl(__u64 local_type_id, void *meta) __ksym;
310
void bpf_obj_drop_impl(void *kptr, void *meta) __ksym;
311
312
#define bpf_obj_new(type) ((type *)bpf_obj_new_impl(bpf_core_type_id_local(type), NULL))
313
#define bpf_obj_drop(kptr) bpf_obj_drop_impl(kptr, NULL)
314
315
int bpf_list_push_front_impl(struct bpf_list_head *head,
316
struct bpf_list_node *node,
317
void *meta, __u64 off) __ksym;
318
#define bpf_list_push_front(head, node) bpf_list_push_front_impl(head, node, NULL, 0)
319
320
int bpf_list_push_back_impl(struct bpf_list_head *head,
321
struct bpf_list_node *node,
322
void *meta, __u64 off) __ksym;
323
#define bpf_list_push_back(head, node) bpf_list_push_back_impl(head, node, NULL, 0)
324
325
struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) __ksym;
326
struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) __ksym;
327
struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
328
struct bpf_rb_node *node) __ksym;
329
int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
330
bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
331
void *meta, __u64 off) __ksym;
332
#define bpf_rbtree_add(head, node, less) bpf_rbtree_add_impl(head, node, less, NULL, 0)
333
334
struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) __ksym;
335
336
void *bpf_refcount_acquire_impl(void *kptr, void *meta) __ksym;
337
#define bpf_refcount_acquire(kptr) bpf_refcount_acquire_impl(kptr, NULL)
338
339
/* task */
340
struct task_struct *bpf_task_from_pid(s32 pid) __ksym;
341
struct task_struct *bpf_task_acquire(struct task_struct *p) __ksym;
342
void bpf_task_release(struct task_struct *p) __ksym;
343
344
/* cgroup */
345
struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) __ksym;
346
void bpf_cgroup_release(struct cgroup *cgrp) __ksym;
347
struct cgroup *bpf_cgroup_from_id(u64 cgid) __ksym;
348
349
/* css iteration */
350
struct bpf_iter_css;
351
struct cgroup_subsys_state;
352
extern int bpf_iter_css_new(struct bpf_iter_css *it,
353
struct cgroup_subsys_state *start,
354
unsigned int flags) __weak __ksym;
355
extern struct cgroup_subsys_state *
356
bpf_iter_css_next(struct bpf_iter_css *it) __weak __ksym;
357
extern void bpf_iter_css_destroy(struct bpf_iter_css *it) __weak __ksym;
358
359
/* cpumask */
360
struct bpf_cpumask *bpf_cpumask_create(void) __ksym;
361
struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) __ksym;
362
void bpf_cpumask_release(struct bpf_cpumask *cpumask) __ksym;
363
u32 bpf_cpumask_first(const struct cpumask *cpumask) __ksym;
364
u32 bpf_cpumask_first_zero(const struct cpumask *cpumask) __ksym;
365
void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
366
void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
367
bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask) __ksym;
368
bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
369
bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
370
void bpf_cpumask_setall(struct bpf_cpumask *cpumask) __ksym;
371
void bpf_cpumask_clear(struct bpf_cpumask *cpumask) __ksym;
372
bool bpf_cpumask_and(struct bpf_cpumask *dst, const struct cpumask *src1,
373
const struct cpumask *src2) __ksym;
374
void bpf_cpumask_or(struct bpf_cpumask *dst, const struct cpumask *src1,
375
const struct cpumask *src2) __ksym;
376
void bpf_cpumask_xor(struct bpf_cpumask *dst, const struct cpumask *src1,
377
const struct cpumask *src2) __ksym;
378
bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2) __ksym;
379
bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2) __ksym;
380
bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2) __ksym;
381
bool bpf_cpumask_empty(const struct cpumask *cpumask) __ksym;
382
bool bpf_cpumask_full(const struct cpumask *cpumask) __ksym;
383
void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src) __ksym;
384
u32 bpf_cpumask_any_distribute(const struct cpumask *cpumask) __ksym;
385
u32 bpf_cpumask_any_and_distribute(const struct cpumask *src1,
386
const struct cpumask *src2) __ksym;
387
u32 bpf_cpumask_weight(const struct cpumask *cpumask) __ksym;
388
389
int bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) __ksym;
390
int *bpf_iter_bits_next(struct bpf_iter_bits *it) __ksym;
391
void bpf_iter_bits_destroy(struct bpf_iter_bits *it) __ksym;
392
393
#define def_iter_struct(name) \
394
struct bpf_iter_##name { \
395
struct bpf_iter_bits it; \
396
const struct cpumask *bitmap; \
397
};
398
399
#define def_iter_new(name) \
400
static inline int bpf_iter_##name##_new( \
401
struct bpf_iter_##name *it, const u64 *unsafe_ptr__ign, u32 nr_words) \
402
{ \
403
it->bitmap = scx_bpf_get_##name##_cpumask(); \
404
return bpf_iter_bits_new(&it->it, (const u64 *)it->bitmap, \
405
sizeof(struct cpumask) / 8); \
406
}
407
408
#define def_iter_next(name) \
409
static inline int *bpf_iter_##name##_next(struct bpf_iter_##name *it) { \
410
return bpf_iter_bits_next(&it->it); \
411
}
412
413
#define def_iter_destroy(name) \
414
static inline void bpf_iter_##name##_destroy(struct bpf_iter_##name *it) { \
415
scx_bpf_put_cpumask(it->bitmap); \
416
bpf_iter_bits_destroy(&it->it); \
417
}
418
#define def_for_each_cpu(cpu, name) for_each_##name##_cpu(cpu)
419
420
/// Provides iterator for possible and online cpus.
421
///
422
/// # Example
423
///
424
/// ```
425
/// static inline void example_use() {
426
/// int *cpu;
427
///
428
/// for_each_possible_cpu(cpu){
429
/// bpf_printk("CPU %d is possible", *cpu);
430
/// }
431
///
432
/// for_each_online_cpu(cpu){
433
/// bpf_printk("CPU %d is online", *cpu);
434
/// }
435
/// }
436
/// ```
437
def_iter_struct(possible);
438
def_iter_new(possible);
439
def_iter_next(possible);
440
def_iter_destroy(possible);
441
#define for_each_possible_cpu(cpu) bpf_for_each(possible, cpu, NULL, 0)
442
443
def_iter_struct(online);
444
def_iter_new(online);
445
def_iter_next(online);
446
def_iter_destroy(online);
447
#define for_each_online_cpu(cpu) bpf_for_each(online, cpu, NULL, 0)
448
449
/*
450
* Access a cpumask in read-only mode (typically to check bits).
451
*/
452
static __always_inline const struct cpumask *cast_mask(struct bpf_cpumask *mask)
453
{
454
return (const struct cpumask *)mask;
455
}
456
457
/*
458
* Return true if task @p cannot migrate to a different CPU, false
459
* otherwise.
460
*/
461
static inline bool is_migration_disabled(const struct task_struct *p)
462
{
463
/*
464
* Testing p->migration_disabled in a BPF code is tricky because the
465
* migration is _always_ disabled while running the BPF code.
466
* The prolog (__bpf_prog_enter) and epilog (__bpf_prog_exit) for BPF
467
* code execution disable and re-enable the migration of the current
468
* task, respectively. So, the _current_ task of the sched_ext ops is
469
* always migration-disabled. Moreover, p->migration_disabled could be
470
* two or greater when a sched_ext ops BPF code (e.g., ops.tick) is
471
* executed in the middle of the other BPF code execution.
472
*
473
* Therefore, we should decide that the _current_ task is
474
* migration-disabled only when its migration_disabled count is greater
475
* than one. In other words, when p->migration_disabled == 1, there is
476
* an ambiguity, so we should check if @p is the current task or not.
477
*/
478
if (bpf_core_field_exists(p->migration_disabled)) {
479
if (p->migration_disabled == 1)
480
return bpf_get_current_task_btf() != p;
481
else
482
return p->migration_disabled;
483
}
484
return false;
485
}
486
487
/* rcu */
488
void bpf_rcu_read_lock(void) __ksym;
489
void bpf_rcu_read_unlock(void) __ksym;
490
491
/*
492
* Time helpers, most of which are from jiffies.h.
493
*/
494
495
/**
496
* time_delta - Calculate the delta between new and old time stamp
497
* @after: first comparable as u64
498
* @before: second comparable as u64
499
*
500
* Return: the time difference, which is >= 0
501
*/
502
static inline s64 time_delta(u64 after, u64 before)
503
{
504
return (s64)(after - before) > 0 ? (s64)(after - before) : 0;
505
}
506
507
/**
508
* time_after - returns true if the time a is after time b.
509
* @a: first comparable as u64
510
* @b: second comparable as u64
511
*
512
* Do this with "<0" and ">=0" to only test the sign of the result. A
513
* good compiler would generate better code (and a really good compiler
514
* wouldn't care). Gcc is currently neither.
515
*
516
* Return: %true is time a is after time b, otherwise %false.
517
*/
518
static inline bool time_after(u64 a, u64 b)
519
{
520
return (s64)(b - a) < 0;
521
}
522
523
/**
524
* time_before - returns true if the time a is before time b.
525
* @a: first comparable as u64
526
* @b: second comparable as u64
527
*
528
* Return: %true is time a is before time b, otherwise %false.
529
*/
530
static inline bool time_before(u64 a, u64 b)
531
{
532
return time_after(b, a);
533
}
534
535
/**
536
* time_after_eq - returns true if the time a is after or the same as time b.
537
* @a: first comparable as u64
538
* @b: second comparable as u64
539
*
540
* Return: %true is time a is after or the same as time b, otherwise %false.
541
*/
542
static inline bool time_after_eq(u64 a, u64 b)
543
{
544
return (s64)(a - b) >= 0;
545
}
546
547
/**
548
* time_before_eq - returns true if the time a is before or the same as time b.
549
* @a: first comparable as u64
550
* @b: second comparable as u64
551
*
552
* Return: %true is time a is before or the same as time b, otherwise %false.
553
*/
554
static inline bool time_before_eq(u64 a, u64 b)
555
{
556
return time_after_eq(b, a);
557
}
558
559
/**
560
* time_in_range - Calculate whether a is in the range of [b, c].
561
* @a: time to test
562
* @b: beginning of the range
563
* @c: end of the range
564
*
565
* Return: %true is time a is in the range [b, c], otherwise %false.
566
*/
567
static inline bool time_in_range(u64 a, u64 b, u64 c)
568
{
569
return time_after_eq(a, b) && time_before_eq(a, c);
570
}
571
572
/**
573
* time_in_range_open - Calculate whether a is in the range of [b, c).
574
* @a: time to test
575
* @b: beginning of the range
576
* @c: end of the range
577
*
578
* Return: %true is time a is in the range [b, c), otherwise %false.
579
*/
580
static inline bool time_in_range_open(u64 a, u64 b, u64 c)
581
{
582
return time_after_eq(a, b) && time_before(a, c);
583
}
584
585
586
/*
587
* Other helpers
588
*/
589
590
/* useful compiler attributes */
591
#ifndef likely
592
#define likely(x) __builtin_expect(!!(x), 1)
593
#endif
594
#ifndef unlikely
595
#define unlikely(x) __builtin_expect(!!(x), 0)
596
#endif
597
#ifndef __maybe_unused
598
#define __maybe_unused __attribute__((__unused__))
599
#endif
600
601
/*
602
* READ/WRITE_ONCE() are from kernel (include/asm-generic/rwonce.h). They
603
* prevent compiler from caching, redoing or reordering reads or writes.
604
*/
605
typedef __u8 __attribute__((__may_alias__)) __u8_alias_t;
606
typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
607
typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
608
typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
609
610
static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
611
{
612
switch (size) {
613
case 1: *(__u8_alias_t *) res = *(volatile __u8_alias_t *) p; break;
614
case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
615
case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
616
case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
617
default:
618
barrier();
619
__builtin_memcpy((void *)res, (const void *)p, size);
620
barrier();
621
}
622
}
623
624
static __always_inline void __write_once_size(volatile void *p, void *res, int size)
625
{
626
switch (size) {
627
case 1: *(volatile __u8_alias_t *) p = *(__u8_alias_t *) res; break;
628
case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
629
case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
630
case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
631
default:
632
barrier();
633
__builtin_memcpy((void *)p, (const void *)res, size);
634
barrier();
635
}
636
}
637
638
/*
639
* __unqual_typeof(x) - Declare an unqualified scalar type, leaving
640
* non-scalar types unchanged,
641
*
642
* Prefer C11 _Generic for better compile-times and simpler code. Note: 'char'
643
* is not type-compatible with 'signed char', and we define a separate case.
644
*
645
* This is copied verbatim from kernel's include/linux/compiler_types.h, but
646
* with default expression (for pointers) changed from (x) to (typeof(x)0).
647
*
648
* This is because LLVM has a bug where for lvalue (x), it does not get rid of
649
* an extra address_space qualifier, but does in case of rvalue (typeof(x)0).
650
* Hence, for pointers, we need to create an rvalue expression to get the
651
* desired type. See https://github.com/llvm/llvm-project/issues/53400.
652
*/
653
#define __scalar_type_to_expr_cases(type) \
654
unsigned type : (unsigned type)0, signed type : (signed type)0
655
656
#define __unqual_typeof(x) \
657
typeof(_Generic((x), \
658
char: (char)0, \
659
__scalar_type_to_expr_cases(char), \
660
__scalar_type_to_expr_cases(short), \
661
__scalar_type_to_expr_cases(int), \
662
__scalar_type_to_expr_cases(long), \
663
__scalar_type_to_expr_cases(long long), \
664
default: (typeof(x))0))
665
666
#define READ_ONCE(x) \
667
({ \
668
union { __unqual_typeof(x) __val; char __c[1]; } __u = \
669
{ .__c = { 0 } }; \
670
__read_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x)); \
671
__u.__val; \
672
})
673
674
#define WRITE_ONCE(x, val) \
675
({ \
676
union { __unqual_typeof(x) __val; char __c[1]; } __u = \
677
{ .__val = (val) }; \
678
__write_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x)); \
679
__u.__val; \
680
})
681
682
/*
683
* __calc_avg - Calculate exponential weighted moving average (EWMA) with
684
* @old and @new values. @decay represents how large the @old value remains.
685
* With a larger @decay value, the moving average changes slowly, exhibiting
686
* fewer fluctuations.
687
*/
688
#define __calc_avg(old, new, decay) ({ \
689
typeof(decay) thr = 1 << (decay); \
690
typeof(old) ret; \
691
if (((old) < thr) || ((new) < thr)) { \
692
if (((old) == 1) && ((new) == 0)) \
693
ret = 0; \
694
else \
695
ret = ((old) - ((old) >> 1)) + ((new) >> 1); \
696
} else { \
697
ret = ((old) - ((old) >> (decay))) + ((new) >> (decay)); \
698
} \
699
ret; \
700
})
701
702
/*
703
* log2_u32 - Compute the base 2 logarithm of a 32-bit exponential value.
704
* @v: The value for which we're computing the base 2 logarithm.
705
*/
706
static inline u32 log2_u32(u32 v)
707
{
708
u32 r;
709
u32 shift;
710
711
r = (v > 0xFFFF) << 4; v >>= r;
712
shift = (v > 0xFF) << 3; v >>= shift; r |= shift;
713
shift = (v > 0xF) << 2; v >>= shift; r |= shift;
714
shift = (v > 0x3) << 1; v >>= shift; r |= shift;
715
r |= (v >> 1);
716
return r;
717
}
718
719
/*
720
* log2_u64 - Compute the base 2 logarithm of a 64-bit exponential value.
721
* @v: The value for which we're computing the base 2 logarithm.
722
*/
723
static inline u32 log2_u64(u64 v)
724
{
725
u32 hi = v >> 32;
726
if (hi)
727
return log2_u32(hi) + 32 + 1;
728
else
729
return log2_u32(v) + 1;
730
}
731
732
/*
733
* sqrt_u64 - Calculate the square root of value @x using Newton's method.
734
*/
735
static inline u64 __sqrt_u64(u64 x)
736
{
737
if (x == 0 || x == 1)
738
return x;
739
740
u64 r = ((1ULL << 32) > x) ? x : (1ULL << 32);
741
742
for (int i = 0; i < 8; ++i) {
743
u64 q = x / r;
744
if (r <= q)
745
break;
746
r = (r + q) >> 1;
747
}
748
return r;
749
}
750
751
/*
752
* Return a value proportionally scaled to the task's weight.
753
*/
754
static inline u64 scale_by_task_weight(const struct task_struct *p, u64 value)
755
{
756
return (value * p->scx.weight) / 100;
757
}
758
759
/*
760
* Return a value inversely proportional to the task's weight.
761
*/
762
static inline u64 scale_by_task_weight_inverse(const struct task_struct *p, u64 value)
763
{
764
return value * 100 / p->scx.weight;
765
}
766
767
768
#include "compat.bpf.h"
769
#include "enums.bpf.h"
770
771
#endif /* __SCX_COMMON_BPF_H */
772
773