Path: blob/master/tools/sched_ext/include/scx/common.bpf.h
29271 views
/* SPDX-License-Identifier: GPL-2.0 */1/*2* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.3* Copyright (c) 2022 Tejun Heo <[email protected]>4* Copyright (c) 2022 David Vernet <[email protected]>5*/6#ifndef __SCX_COMMON_BPF_H7#define __SCX_COMMON_BPF_H89/*10* The generated kfunc prototypes in vmlinux.h are missing address space11* attributes which cause build failures. For now, suppress the generated12* prototypes. See https://github.com/sched-ext/scx/issues/1111.13*/14#define BPF_NO_KFUNC_PROTOTYPES1516#ifdef LSP17#define __bpf__18#include "../vmlinux.h"19#else20#include "vmlinux.h"21#endif2223#include <bpf/bpf_helpers.h>24#include <bpf/bpf_tracing.h>25#include <asm-generic/errno.h>26#include "user_exit_info.bpf.h"27#include "enum_defs.autogen.h"2829#define PF_IDLE 0x00000002 /* I am an IDLE thread */30#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */31#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */32#define PF_KCOMPACTD 0x00010000 /* I am kcompactd */33#define PF_KSWAPD 0x00020000 /* I am kswapd */34#define PF_KTHREAD 0x00200000 /* I am a kernel thread */35#define PF_EXITING 0x0000000436#define CLOCK_MONOTONIC 13738#ifndef NR_CPUS39#define NR_CPUS 102440#endif4142#ifndef NUMA_NO_NODE43#define NUMA_NO_NODE (-1)44#endif4546extern int LINUX_KERNEL_VERSION __kconfig;47extern const char CONFIG_CC_VERSION_TEXT[64] __kconfig __weak;48extern const char CONFIG_LOCALVERSION[64] __kconfig __weak;4950/*51* Earlier versions of clang/pahole lost upper 32bits in 64bit enums which can52* lead to really confusing misbehaviors. Let's trigger a build failure.53*/54static inline void ___vmlinux_h_sanity_check___(void)55{56_Static_assert(SCX_DSQ_FLAG_BUILTIN,57"bpftool generated vmlinux.h is missing high bits for 64bit enums, upgrade clang and pahole");58}5960s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) __ksym;61s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) __ksym;62s32 scx_bpf_select_cpu_and(struct task_struct *p, s32 prev_cpu, u64 wake_flags,63const struct cpumask *cpus_allowed, u64 flags) __ksym __weak;64void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, u64 enq_flags) __ksym __weak;65void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) __ksym __weak;66u32 scx_bpf_dispatch_nr_slots(void) __ksym;67void scx_bpf_dispatch_cancel(void) __ksym;68bool scx_bpf_dsq_move_to_local(u64 dsq_id) __ksym __weak;69void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, u64 slice) __ksym __weak;70void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, u64 vtime) __ksym __weak;71bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;72bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;73u32 scx_bpf_reenqueue_local(void) __ksym;74void scx_bpf_kick_cpu(s32 cpu, u64 flags) __ksym;75s32 scx_bpf_dsq_nr_queued(u64 dsq_id) __ksym;76void scx_bpf_destroy_dsq(u64 dsq_id) __ksym;77int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, u64 flags) __ksym __weak;78struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) __ksym __weak;79void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) __ksym __weak;80void scx_bpf_exit_bstr(s64 exit_code, char *fmt, unsigned long long *data, u32 data__sz) __ksym __weak;81void scx_bpf_error_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym;82void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym __weak;83u32 scx_bpf_cpuperf_cap(s32 cpu) __ksym __weak;84u32 scx_bpf_cpuperf_cur(s32 cpu) __ksym __weak;85void scx_bpf_cpuperf_set(s32 cpu, u32 perf) __ksym __weak;86u32 scx_bpf_nr_node_ids(void) __ksym __weak;87u32 scx_bpf_nr_cpu_ids(void) __ksym __weak;88int scx_bpf_cpu_node(s32 cpu) __ksym __weak;89const struct cpumask *scx_bpf_get_possible_cpumask(void) __ksym __weak;90const struct cpumask *scx_bpf_get_online_cpumask(void) __ksym __weak;91void scx_bpf_put_cpumask(const struct cpumask *cpumask) __ksym __weak;92const struct cpumask *scx_bpf_get_idle_cpumask_node(int node) __ksym __weak;93const struct cpumask *scx_bpf_get_idle_cpumask(void) __ksym;94const struct cpumask *scx_bpf_get_idle_smtmask_node(int node) __ksym __weak;95const struct cpumask *scx_bpf_get_idle_smtmask(void) __ksym;96void scx_bpf_put_idle_cpumask(const struct cpumask *cpumask) __ksym;97bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) __ksym;98s32 scx_bpf_pick_idle_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;99s32 scx_bpf_pick_idle_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;100s32 scx_bpf_pick_any_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;101s32 scx_bpf_pick_any_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;102bool scx_bpf_task_running(const struct task_struct *p) __ksym;103s32 scx_bpf_task_cpu(const struct task_struct *p) __ksym;104struct rq *scx_bpf_cpu_rq(s32 cpu) __ksym;105struct rq *scx_bpf_locked_rq(void) __ksym;106struct task_struct *scx_bpf_cpu_curr(s32 cpu) __ksym __weak;107struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) __ksym __weak;108u64 scx_bpf_now(void) __ksym __weak;109void scx_bpf_events(struct scx_event_stats *events, size_t events__sz) __ksym __weak;110111/*112* Use the following as @it__iter when calling scx_bpf_dsq_move[_vtime]() from113* within bpf_for_each() loops.114*/115#define BPF_FOR_EACH_ITER (&___it)116117#define scx_read_event(e, name) \118(bpf_core_field_exists((e)->name) ? (e)->name : 0)119120static inline __attribute__((format(printf, 1, 2)))121void ___scx_bpf_bstr_format_checker(const char *fmt, ...) {}122123#define SCX_STRINGIFY(x) #x124#define SCX_TOSTRING(x) SCX_STRINGIFY(x)125126/*127* Helper macro for initializing the fmt and variadic argument inputs to both128* bstr exit kfuncs. Callers to this function should use ___fmt and ___param to129* refer to the initialized list of inputs to the bstr kfunc.130*/131#define scx_bpf_bstr_preamble(fmt, args...) \132static char ___fmt[] = fmt; \133/* \134* Note that __param[] must have at least one \135* element to keep the verifier happy. \136*/ \137unsigned long long ___param[___bpf_narg(args) ?: 1] = {}; \138\139_Pragma("GCC diagnostic push") \140_Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \141___bpf_fill(___param, args); \142_Pragma("GCC diagnostic pop")143144/*145* scx_bpf_exit() wraps the scx_bpf_exit_bstr() kfunc with variadic arguments146* instead of an array of u64. Using this macro will cause the scheduler to147* exit cleanly with the specified exit code being passed to user space.148*/149#define scx_bpf_exit(code, fmt, args...) \150({ \151scx_bpf_bstr_preamble(fmt, args) \152scx_bpf_exit_bstr(code, ___fmt, ___param, sizeof(___param)); \153___scx_bpf_bstr_format_checker(fmt, ##args); \154})155156/*157* scx_bpf_error() wraps the scx_bpf_error_bstr() kfunc with variadic arguments158* instead of an array of u64. Invoking this macro will cause the scheduler to159* exit in an erroneous state, with diagnostic information being passed to the160* user. It appends the file and line number to aid debugging.161*/162#define scx_bpf_error(fmt, args...) \163({ \164scx_bpf_bstr_preamble( \165__FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args) \166scx_bpf_error_bstr(___fmt, ___param, sizeof(___param)); \167___scx_bpf_bstr_format_checker( \168__FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args); \169})170171/*172* scx_bpf_dump() wraps the scx_bpf_dump_bstr() kfunc with variadic arguments173* instead of an array of u64. To be used from ops.dump() and friends.174*/175#define scx_bpf_dump(fmt, args...) \176({ \177scx_bpf_bstr_preamble(fmt, args) \178scx_bpf_dump_bstr(___fmt, ___param, sizeof(___param)); \179___scx_bpf_bstr_format_checker(fmt, ##args); \180})181182/*183* scx_bpf_dump_header() is a wrapper around scx_bpf_dump that adds a header184* of system information for debugging.185*/186#define scx_bpf_dump_header() \187({ \188scx_bpf_dump("kernel: %d.%d.%d %s\ncc: %s\n", \189LINUX_KERNEL_VERSION >> 16, \190LINUX_KERNEL_VERSION >> 8 & 0xFF, \191LINUX_KERNEL_VERSION & 0xFF, \192CONFIG_LOCALVERSION, \193CONFIG_CC_VERSION_TEXT); \194})195196#define BPF_STRUCT_OPS(name, args...) \197SEC("struct_ops/"#name) \198BPF_PROG(name, ##args)199200#define BPF_STRUCT_OPS_SLEEPABLE(name, args...) \201SEC("struct_ops.s/"#name) \202BPF_PROG(name, ##args)203204/**205* RESIZABLE_ARRAY - Generates annotations for an array that may be resized206* @elfsec: the data section of the BPF program in which to place the array207* @arr: the name of the array208*209* libbpf has an API for setting map value sizes. Since data sections (i.e.210* bss, data, rodata) themselves are maps, a data section can be resized. If211* a data section has an array as its last element, the BTF info for that212* array will be adjusted so that length of the array is extended to meet the213* new length of the data section. This macro annotates an array to have an214* element count of one with the assumption that this array can be resized215* within the userspace program. It also annotates the section specifier so216* this array exists in a custom sub data section which can be resized217* independently.218*219* See RESIZE_ARRAY() for the userspace convenience macro for resizing an220* array declared with RESIZABLE_ARRAY().221*/222#define RESIZABLE_ARRAY(elfsec, arr) arr[1] SEC("."#elfsec"."#arr)223224/**225* MEMBER_VPTR - Obtain the verified pointer to a struct or array member226* @base: struct or array to index227* @member: dereferenced member (e.g. .field, [idx0][idx1], .field[idx0] ...)228*229* The verifier often gets confused by the instruction sequence the compiler230* generates for indexing struct fields or arrays. This macro forces the231* compiler to generate a code sequence which first calculates the byte offset,232* checks it against the struct or array size and add that byte offset to233* generate the pointer to the member to help the verifier.234*235* Ideally, we want to abort if the calculated offset is out-of-bounds. However,236* BPF currently doesn't support abort, so evaluate to %NULL instead. The caller237* must check for %NULL and take appropriate action to appease the verifier. To238* avoid confusing the verifier, it's best to check for %NULL and dereference239* immediately.240*241* vptr = MEMBER_VPTR(my_array, [i][j]);242* if (!vptr)243* return error;244* *vptr = new_value;245*246* sizeof(@base) should encompass the memory area to be accessed and thus can't247* be a pointer to the area. Use `MEMBER_VPTR(*ptr, .member)` instead of248* `MEMBER_VPTR(ptr, ->member)`.249*/250#ifndef MEMBER_VPTR251#define MEMBER_VPTR(base, member) (typeof((base) member) *) \252({ \253u64 __base = (u64)&(base); \254u64 __addr = (u64)&((base) member) - __base; \255_Static_assert(sizeof(base) >= sizeof((base) member), \256"@base is smaller than @member, is @base a pointer?"); \257asm volatile ( \258"if %0 <= %[max] goto +2\n" \259"%0 = 0\n" \260"goto +1\n" \261"%0 += %1\n" \262: "+r"(__addr) \263: "r"(__base), \264[max]"i"(sizeof(base) - sizeof((base) member))); \265__addr; \266})267#endif /* MEMBER_VPTR */268269/**270* ARRAY_ELEM_PTR - Obtain the verified pointer to an array element271* @arr: array to index into272* @i: array index273* @n: number of elements in array274*275* Similar to MEMBER_VPTR() but is intended for use with arrays where the276* element count needs to be explicit.277* It can be used in cases where a global array is defined with an initial278* size but is intended to be be resized before loading the BPF program.279* Without this version of the macro, MEMBER_VPTR() will use the compile time280* size of the array to compute the max, which will result in rejection by281* the verifier.282*/283#ifndef ARRAY_ELEM_PTR284#define ARRAY_ELEM_PTR(arr, i, n) (typeof(arr[i]) *) \285({ \286u64 __base = (u64)arr; \287u64 __addr = (u64)&(arr[i]) - __base; \288asm volatile ( \289"if %0 <= %[max] goto +2\n" \290"%0 = 0\n" \291"goto +1\n" \292"%0 += %1\n" \293: "+r"(__addr) \294: "r"(__base), \295[max]"r"(sizeof(arr[0]) * ((n) - 1))); \296__addr; \297})298#endif /* ARRAY_ELEM_PTR */299300/*301* BPF declarations and helpers302*/303304/* list and rbtree */305#define __contains(name, node) __attribute__((btf_decl_tag("contains:" #name ":" #node)))306#define private(name) SEC(".data." #name) __hidden __attribute__((aligned(8)))307308void *bpf_obj_new_impl(__u64 local_type_id, void *meta) __ksym;309void bpf_obj_drop_impl(void *kptr, void *meta) __ksym;310311#define bpf_obj_new(type) ((type *)bpf_obj_new_impl(bpf_core_type_id_local(type), NULL))312#define bpf_obj_drop(kptr) bpf_obj_drop_impl(kptr, NULL)313314int bpf_list_push_front_impl(struct bpf_list_head *head,315struct bpf_list_node *node,316void *meta, __u64 off) __ksym;317#define bpf_list_push_front(head, node) bpf_list_push_front_impl(head, node, NULL, 0)318319int bpf_list_push_back_impl(struct bpf_list_head *head,320struct bpf_list_node *node,321void *meta, __u64 off) __ksym;322#define bpf_list_push_back(head, node) bpf_list_push_back_impl(head, node, NULL, 0)323324struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) __ksym;325struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) __ksym;326struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,327struct bpf_rb_node *node) __ksym;328int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,329bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),330void *meta, __u64 off) __ksym;331#define bpf_rbtree_add(head, node, less) bpf_rbtree_add_impl(head, node, less, NULL, 0)332333struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) __ksym;334335void *bpf_refcount_acquire_impl(void *kptr, void *meta) __ksym;336#define bpf_refcount_acquire(kptr) bpf_refcount_acquire_impl(kptr, NULL)337338/* task */339struct task_struct *bpf_task_from_pid(s32 pid) __ksym;340struct task_struct *bpf_task_acquire(struct task_struct *p) __ksym;341void bpf_task_release(struct task_struct *p) __ksym;342343/* cgroup */344struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) __ksym;345void bpf_cgroup_release(struct cgroup *cgrp) __ksym;346struct cgroup *bpf_cgroup_from_id(u64 cgid) __ksym;347348/* css iteration */349struct bpf_iter_css;350struct cgroup_subsys_state;351extern int bpf_iter_css_new(struct bpf_iter_css *it,352struct cgroup_subsys_state *start,353unsigned int flags) __weak __ksym;354extern struct cgroup_subsys_state *355bpf_iter_css_next(struct bpf_iter_css *it) __weak __ksym;356extern void bpf_iter_css_destroy(struct bpf_iter_css *it) __weak __ksym;357358/* cpumask */359struct bpf_cpumask *bpf_cpumask_create(void) __ksym;360struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) __ksym;361void bpf_cpumask_release(struct bpf_cpumask *cpumask) __ksym;362u32 bpf_cpumask_first(const struct cpumask *cpumask) __ksym;363u32 bpf_cpumask_first_zero(const struct cpumask *cpumask) __ksym;364void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;365void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;366bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask) __ksym;367bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;368bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;369void bpf_cpumask_setall(struct bpf_cpumask *cpumask) __ksym;370void bpf_cpumask_clear(struct bpf_cpumask *cpumask) __ksym;371bool bpf_cpumask_and(struct bpf_cpumask *dst, const struct cpumask *src1,372const struct cpumask *src2) __ksym;373void bpf_cpumask_or(struct bpf_cpumask *dst, const struct cpumask *src1,374const struct cpumask *src2) __ksym;375void bpf_cpumask_xor(struct bpf_cpumask *dst, const struct cpumask *src1,376const struct cpumask *src2) __ksym;377bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2) __ksym;378bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2) __ksym;379bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2) __ksym;380bool bpf_cpumask_empty(const struct cpumask *cpumask) __ksym;381bool bpf_cpumask_full(const struct cpumask *cpumask) __ksym;382void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src) __ksym;383u32 bpf_cpumask_any_distribute(const struct cpumask *cpumask) __ksym;384u32 bpf_cpumask_any_and_distribute(const struct cpumask *src1,385const struct cpumask *src2) __ksym;386u32 bpf_cpumask_weight(const struct cpumask *cpumask) __ksym;387388int bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) __ksym;389int *bpf_iter_bits_next(struct bpf_iter_bits *it) __ksym;390void bpf_iter_bits_destroy(struct bpf_iter_bits *it) __ksym;391392#define def_iter_struct(name) \393struct bpf_iter_##name { \394struct bpf_iter_bits it; \395const struct cpumask *bitmap; \396};397398#define def_iter_new(name) \399static inline int bpf_iter_##name##_new( \400struct bpf_iter_##name *it, const u64 *unsafe_ptr__ign, u32 nr_words) \401{ \402it->bitmap = scx_bpf_get_##name##_cpumask(); \403return bpf_iter_bits_new(&it->it, (const u64 *)it->bitmap, \404sizeof(struct cpumask) / 8); \405}406407#define def_iter_next(name) \408static inline int *bpf_iter_##name##_next(struct bpf_iter_##name *it) { \409return bpf_iter_bits_next(&it->it); \410}411412#define def_iter_destroy(name) \413static inline void bpf_iter_##name##_destroy(struct bpf_iter_##name *it) { \414scx_bpf_put_cpumask(it->bitmap); \415bpf_iter_bits_destroy(&it->it); \416}417#define def_for_each_cpu(cpu, name) for_each_##name##_cpu(cpu)418419/// Provides iterator for possible and online cpus.420///421/// # Example422///423/// ```424/// static inline void example_use() {425/// int *cpu;426///427/// for_each_possible_cpu(cpu){428/// bpf_printk("CPU %d is possible", *cpu);429/// }430///431/// for_each_online_cpu(cpu){432/// bpf_printk("CPU %d is online", *cpu);433/// }434/// }435/// ```436def_iter_struct(possible);437def_iter_new(possible);438def_iter_next(possible);439def_iter_destroy(possible);440#define for_each_possible_cpu(cpu) bpf_for_each(possible, cpu, NULL, 0)441442def_iter_struct(online);443def_iter_new(online);444def_iter_next(online);445def_iter_destroy(online);446#define for_each_online_cpu(cpu) bpf_for_each(online, cpu, NULL, 0)447448/*449* Access a cpumask in read-only mode (typically to check bits).450*/451static __always_inline const struct cpumask *cast_mask(struct bpf_cpumask *mask)452{453return (const struct cpumask *)mask;454}455456/*457* Return true if task @p cannot migrate to a different CPU, false458* otherwise.459*/460static inline bool is_migration_disabled(const struct task_struct *p)461{462/*463* Testing p->migration_disabled in a BPF code is tricky because the464* migration is _always_ disabled while running the BPF code.465* The prolog (__bpf_prog_enter) and epilog (__bpf_prog_exit) for BPF466* code execution disable and re-enable the migration of the current467* task, respectively. So, the _current_ task of the sched_ext ops is468* always migration-disabled. Moreover, p->migration_disabled could be469* two or greater when a sched_ext ops BPF code (e.g., ops.tick) is470* executed in the middle of the other BPF code execution.471*472* Therefore, we should decide that the _current_ task is473* migration-disabled only when its migration_disabled count is greater474* than one. In other words, when p->migration_disabled == 1, there is475* an ambiguity, so we should check if @p is the current task or not.476*/477if (bpf_core_field_exists(p->migration_disabled)) {478if (p->migration_disabled == 1)479return bpf_get_current_task_btf() != p;480else481return p->migration_disabled;482}483return false;484}485486/* rcu */487void bpf_rcu_read_lock(void) __ksym;488void bpf_rcu_read_unlock(void) __ksym;489490/*491* Time helpers, most of which are from jiffies.h.492*/493494/**495* time_delta - Calculate the delta between new and old time stamp496* @after: first comparable as u64497* @before: second comparable as u64498*499* Return: the time difference, which is >= 0500*/501static inline s64 time_delta(u64 after, u64 before)502{503return (s64)(after - before) > 0 ? (s64)(after - before) : 0;504}505506/**507* time_after - returns true if the time a is after time b.508* @a: first comparable as u64509* @b: second comparable as u64510*511* Do this with "<0" and ">=0" to only test the sign of the result. A512* good compiler would generate better code (and a really good compiler513* wouldn't care). Gcc is currently neither.514*515* Return: %true is time a is after time b, otherwise %false.516*/517static inline bool time_after(u64 a, u64 b)518{519return (s64)(b - a) < 0;520}521522/**523* time_before - returns true if the time a is before time b.524* @a: first comparable as u64525* @b: second comparable as u64526*527* Return: %true is time a is before time b, otherwise %false.528*/529static inline bool time_before(u64 a, u64 b)530{531return time_after(b, a);532}533534/**535* time_after_eq - returns true if the time a is after or the same as time b.536* @a: first comparable as u64537* @b: second comparable as u64538*539* Return: %true is time a is after or the same as time b, otherwise %false.540*/541static inline bool time_after_eq(u64 a, u64 b)542{543return (s64)(a - b) >= 0;544}545546/**547* time_before_eq - returns true if the time a is before or the same as time b.548* @a: first comparable as u64549* @b: second comparable as u64550*551* Return: %true is time a is before or the same as time b, otherwise %false.552*/553static inline bool time_before_eq(u64 a, u64 b)554{555return time_after_eq(b, a);556}557558/**559* time_in_range - Calculate whether a is in the range of [b, c].560* @a: time to test561* @b: beginning of the range562* @c: end of the range563*564* Return: %true is time a is in the range [b, c], otherwise %false.565*/566static inline bool time_in_range(u64 a, u64 b, u64 c)567{568return time_after_eq(a, b) && time_before_eq(a, c);569}570571/**572* time_in_range_open - Calculate whether a is in the range of [b, c).573* @a: time to test574* @b: beginning of the range575* @c: end of the range576*577* Return: %true is time a is in the range [b, c), otherwise %false.578*/579static inline bool time_in_range_open(u64 a, u64 b, u64 c)580{581return time_after_eq(a, b) && time_before(a, c);582}583584585/*586* Other helpers587*/588589/* useful compiler attributes */590#ifndef likely591#define likely(x) __builtin_expect(!!(x), 1)592#endif593#ifndef unlikely594#define unlikely(x) __builtin_expect(!!(x), 0)595#endif596#ifndef __maybe_unused597#define __maybe_unused __attribute__((__unused__))598#endif599600/*601* READ/WRITE_ONCE() are from kernel (include/asm-generic/rwonce.h). They602* prevent compiler from caching, redoing or reordering reads or writes.603*/604typedef __u8 __attribute__((__may_alias__)) __u8_alias_t;605typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;606typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;607typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;608609static __always_inline void __read_once_size(const volatile void *p, void *res, int size)610{611switch (size) {612case 1: *(__u8_alias_t *) res = *(volatile __u8_alias_t *) p; break;613case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;614case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;615case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;616default:617barrier();618__builtin_memcpy((void *)res, (const void *)p, size);619barrier();620}621}622623static __always_inline void __write_once_size(volatile void *p, void *res, int size)624{625switch (size) {626case 1: *(volatile __u8_alias_t *) p = *(__u8_alias_t *) res; break;627case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;628case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;629case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;630default:631barrier();632__builtin_memcpy((void *)p, (const void *)res, size);633barrier();634}635}636637/*638* __unqual_typeof(x) - Declare an unqualified scalar type, leaving639* non-scalar types unchanged,640*641* Prefer C11 _Generic for better compile-times and simpler code. Note: 'char'642* is not type-compatible with 'signed char', and we define a separate case.643*644* This is copied verbatim from kernel's include/linux/compiler_types.h, but645* with default expression (for pointers) changed from (x) to (typeof(x)0).646*647* This is because LLVM has a bug where for lvalue (x), it does not get rid of648* an extra address_space qualifier, but does in case of rvalue (typeof(x)0).649* Hence, for pointers, we need to create an rvalue expression to get the650* desired type. See https://github.com/llvm/llvm-project/issues/53400.651*/652#define __scalar_type_to_expr_cases(type) \653unsigned type : (unsigned type)0, signed type : (signed type)0654655#define __unqual_typeof(x) \656typeof(_Generic((x), \657char: (char)0, \658__scalar_type_to_expr_cases(char), \659__scalar_type_to_expr_cases(short), \660__scalar_type_to_expr_cases(int), \661__scalar_type_to_expr_cases(long), \662__scalar_type_to_expr_cases(long long), \663default: (typeof(x))0))664665#define READ_ONCE(x) \666({ \667union { __unqual_typeof(x) __val; char __c[1]; } __u = \668{ .__c = { 0 } }; \669__read_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x)); \670__u.__val; \671})672673#define WRITE_ONCE(x, val) \674({ \675union { __unqual_typeof(x) __val; char __c[1]; } __u = \676{ .__val = (val) }; \677__write_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x)); \678__u.__val; \679})680681/*682* __calc_avg - Calculate exponential weighted moving average (EWMA) with683* @old and @new values. @decay represents how large the @old value remains.684* With a larger @decay value, the moving average changes slowly, exhibiting685* fewer fluctuations.686*/687#define __calc_avg(old, new, decay) ({ \688typeof(decay) thr = 1 << (decay); \689typeof(old) ret; \690if (((old) < thr) || ((new) < thr)) { \691if (((old) == 1) && ((new) == 0)) \692ret = 0; \693else \694ret = ((old) - ((old) >> 1)) + ((new) >> 1); \695} else { \696ret = ((old) - ((old) >> (decay))) + ((new) >> (decay)); \697} \698ret; \699})700701/*702* log2_u32 - Compute the base 2 logarithm of a 32-bit exponential value.703* @v: The value for which we're computing the base 2 logarithm.704*/705static inline u32 log2_u32(u32 v)706{707u32 r;708u32 shift;709710r = (v > 0xFFFF) << 4; v >>= r;711shift = (v > 0xFF) << 3; v >>= shift; r |= shift;712shift = (v > 0xF) << 2; v >>= shift; r |= shift;713shift = (v > 0x3) << 1; v >>= shift; r |= shift;714r |= (v >> 1);715return r;716}717718/*719* log2_u64 - Compute the base 2 logarithm of a 64-bit exponential value.720* @v: The value for which we're computing the base 2 logarithm.721*/722static inline u32 log2_u64(u64 v)723{724u32 hi = v >> 32;725if (hi)726return log2_u32(hi) + 32 + 1;727else728return log2_u32(v) + 1;729}730731/*732* sqrt_u64 - Calculate the square root of value @x using Newton's method.733*/734static inline u64 __sqrt_u64(u64 x)735{736if (x == 0 || x == 1)737return x;738739u64 r = ((1ULL << 32) > x) ? x : (1ULL << 32);740741for (int i = 0; i < 8; ++i) {742u64 q = x / r;743if (r <= q)744break;745r = (r + q) >> 1;746}747return r;748}749750/*751* Return a value proportionally scaled to the task's weight.752*/753static inline u64 scale_by_task_weight(const struct task_struct *p, u64 value)754{755return (value * p->scx.weight) / 100;756}757758/*759* Return a value inversely proportional to the task's weight.760*/761static inline u64 scale_by_task_weight_inverse(const struct task_struct *p, u64 value)762{763return value * 100 / p->scx.weight;764}765766767#include "compat.bpf.h"768#include "enums.bpf.h"769770#endif /* __SCX_COMMON_BPF_H */771772773