Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/sched_ext/scx_qmap.bpf.c
29269 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* A simple five-level FIFO queue scheduler.
4
*
5
* There are five FIFOs implemented using BPF_MAP_TYPE_QUEUE. A task gets
6
* assigned to one depending on its compound weight. Each CPU round robins
7
* through the FIFOs and dispatches more from FIFOs with higher indices - 1 from
8
* queue0, 2 from queue1, 4 from queue2 and so on.
9
*
10
* This scheduler demonstrates:
11
*
12
* - BPF-side queueing using PIDs.
13
* - Sleepable per-task storage allocation using ops.prep_enable().
14
* - Using ops.cpu_release() to handle a higher priority scheduling class taking
15
* the CPU away.
16
* - Core-sched support.
17
*
18
* This scheduler is primarily for demonstration and testing of sched_ext
19
* features and unlikely to be useful for actual workloads.
20
*
21
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
22
* Copyright (c) 2022 Tejun Heo <[email protected]>
23
* Copyright (c) 2022 David Vernet <[email protected]>
24
*/
25
#include <scx/common.bpf.h>
26
27
enum consts {
28
ONE_SEC_IN_NS = 1000000000,
29
SHARED_DSQ = 0,
30
HIGHPRI_DSQ = 1,
31
HIGHPRI_WEIGHT = 8668, /* this is what -20 maps to */
32
};
33
34
char _license[] SEC("license") = "GPL";
35
36
const volatile u64 slice_ns;
37
const volatile u32 stall_user_nth;
38
const volatile u32 stall_kernel_nth;
39
const volatile u32 dsp_inf_loop_after;
40
const volatile u32 dsp_batch;
41
const volatile bool highpri_boosting;
42
const volatile bool print_dsqs_and_events;
43
const volatile bool print_msgs;
44
const volatile s32 disallow_tgid;
45
const volatile bool suppress_dump;
46
47
u64 nr_highpri_queued;
48
u32 test_error_cnt;
49
50
UEI_DEFINE(uei);
51
52
struct qmap {
53
__uint(type, BPF_MAP_TYPE_QUEUE);
54
__uint(max_entries, 4096);
55
__type(value, u32);
56
} queue0 SEC(".maps"),
57
queue1 SEC(".maps"),
58
queue2 SEC(".maps"),
59
queue3 SEC(".maps"),
60
queue4 SEC(".maps"),
61
dump_store SEC(".maps");
62
63
struct {
64
__uint(type, BPF_MAP_TYPE_ARRAY_OF_MAPS);
65
__uint(max_entries, 5);
66
__type(key, int);
67
__array(values, struct qmap);
68
} queue_arr SEC(".maps") = {
69
.values = {
70
[0] = &queue0,
71
[1] = &queue1,
72
[2] = &queue2,
73
[3] = &queue3,
74
[4] = &queue4,
75
},
76
};
77
78
/*
79
* If enabled, CPU performance target is set according to the queue index
80
* according to the following table.
81
*/
82
static const u32 qidx_to_cpuperf_target[] = {
83
[0] = SCX_CPUPERF_ONE * 0 / 4,
84
[1] = SCX_CPUPERF_ONE * 1 / 4,
85
[2] = SCX_CPUPERF_ONE * 2 / 4,
86
[3] = SCX_CPUPERF_ONE * 3 / 4,
87
[4] = SCX_CPUPERF_ONE * 4 / 4,
88
};
89
90
/*
91
* Per-queue sequence numbers to implement core-sched ordering.
92
*
93
* Tail seq is assigned to each queued task and incremented. Head seq tracks the
94
* sequence number of the latest dispatched task. The distance between the a
95
* task's seq and the associated queue's head seq is called the queue distance
96
* and used when comparing two tasks for ordering. See qmap_core_sched_before().
97
*/
98
static u64 core_sched_head_seqs[5];
99
static u64 core_sched_tail_seqs[5];
100
101
/* Per-task scheduling context */
102
struct task_ctx {
103
bool force_local; /* Dispatch directly to local_dsq */
104
bool highpri;
105
u64 core_sched_seq;
106
};
107
108
struct {
109
__uint(type, BPF_MAP_TYPE_TASK_STORAGE);
110
__uint(map_flags, BPF_F_NO_PREALLOC);
111
__type(key, int);
112
__type(value, struct task_ctx);
113
} task_ctx_stor SEC(".maps");
114
115
struct cpu_ctx {
116
u64 dsp_idx; /* dispatch index */
117
u64 dsp_cnt; /* remaining count */
118
u32 avg_weight;
119
u32 cpuperf_target;
120
};
121
122
struct {
123
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
124
__uint(max_entries, 1);
125
__type(key, u32);
126
__type(value, struct cpu_ctx);
127
} cpu_ctx_stor SEC(".maps");
128
129
/* Statistics */
130
u64 nr_enqueued, nr_dispatched, nr_reenqueued, nr_dequeued, nr_ddsp_from_enq;
131
u64 nr_core_sched_execed;
132
u64 nr_expedited_local, nr_expedited_remote, nr_expedited_lost, nr_expedited_from_timer;
133
u32 cpuperf_min, cpuperf_avg, cpuperf_max;
134
u32 cpuperf_target_min, cpuperf_target_avg, cpuperf_target_max;
135
136
static s32 pick_direct_dispatch_cpu(struct task_struct *p, s32 prev_cpu)
137
{
138
s32 cpu;
139
140
if (p->nr_cpus_allowed == 1 ||
141
scx_bpf_test_and_clear_cpu_idle(prev_cpu))
142
return prev_cpu;
143
144
cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0);
145
if (cpu >= 0)
146
return cpu;
147
148
return -1;
149
}
150
151
static struct task_ctx *lookup_task_ctx(struct task_struct *p)
152
{
153
struct task_ctx *tctx;
154
155
if (!(tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0))) {
156
scx_bpf_error("task_ctx lookup failed");
157
return NULL;
158
}
159
return tctx;
160
}
161
162
s32 BPF_STRUCT_OPS(qmap_select_cpu, struct task_struct *p,
163
s32 prev_cpu, u64 wake_flags)
164
{
165
struct task_ctx *tctx;
166
s32 cpu;
167
168
if (!(tctx = lookup_task_ctx(p)))
169
return -ESRCH;
170
171
cpu = pick_direct_dispatch_cpu(p, prev_cpu);
172
173
if (cpu >= 0) {
174
tctx->force_local = true;
175
return cpu;
176
} else {
177
return prev_cpu;
178
}
179
}
180
181
static int weight_to_idx(u32 weight)
182
{
183
/* Coarsely map the compound weight to a FIFO. */
184
if (weight <= 25)
185
return 0;
186
else if (weight <= 50)
187
return 1;
188
else if (weight < 200)
189
return 2;
190
else if (weight < 400)
191
return 3;
192
else
193
return 4;
194
}
195
196
void BPF_STRUCT_OPS(qmap_enqueue, struct task_struct *p, u64 enq_flags)
197
{
198
static u32 user_cnt, kernel_cnt;
199
struct task_ctx *tctx;
200
u32 pid = p->pid;
201
int idx = weight_to_idx(p->scx.weight);
202
void *ring;
203
s32 cpu;
204
205
if (p->flags & PF_KTHREAD) {
206
if (stall_kernel_nth && !(++kernel_cnt % stall_kernel_nth))
207
return;
208
} else {
209
if (stall_user_nth && !(++user_cnt % stall_user_nth))
210
return;
211
}
212
213
if (test_error_cnt && !--test_error_cnt)
214
scx_bpf_error("test triggering error");
215
216
if (!(tctx = lookup_task_ctx(p)))
217
return;
218
219
/*
220
* All enqueued tasks must have their core_sched_seq updated for correct
221
* core-sched ordering. Also, take a look at the end of qmap_dispatch().
222
*/
223
tctx->core_sched_seq = core_sched_tail_seqs[idx]++;
224
225
/*
226
* If qmap_select_cpu() is telling us to or this is the last runnable
227
* task on the CPU, enqueue locally.
228
*/
229
if (tctx->force_local) {
230
tctx->force_local = false;
231
scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL, slice_ns, enq_flags);
232
return;
233
}
234
235
/* if select_cpu() wasn't called, try direct dispatch */
236
if (!__COMPAT_is_enq_cpu_selected(enq_flags) &&
237
(cpu = pick_direct_dispatch_cpu(p, scx_bpf_task_cpu(p))) >= 0) {
238
__sync_fetch_and_add(&nr_ddsp_from_enq, 1);
239
scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL_ON | cpu, slice_ns, enq_flags);
240
return;
241
}
242
243
/*
244
* If the task was re-enqueued due to the CPU being preempted by a
245
* higher priority scheduling class, just re-enqueue the task directly
246
* on the global DSQ. As we want another CPU to pick it up, find and
247
* kick an idle CPU.
248
*/
249
if (enq_flags & SCX_ENQ_REENQ) {
250
s32 cpu;
251
252
scx_bpf_dsq_insert(p, SHARED_DSQ, 0, enq_flags);
253
cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0);
254
if (cpu >= 0)
255
scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE);
256
return;
257
}
258
259
ring = bpf_map_lookup_elem(&queue_arr, &idx);
260
if (!ring) {
261
scx_bpf_error("failed to find ring %d", idx);
262
return;
263
}
264
265
/* Queue on the selected FIFO. If the FIFO overflows, punt to global. */
266
if (bpf_map_push_elem(ring, &pid, 0)) {
267
scx_bpf_dsq_insert(p, SHARED_DSQ, slice_ns, enq_flags);
268
return;
269
}
270
271
if (highpri_boosting && p->scx.weight >= HIGHPRI_WEIGHT) {
272
tctx->highpri = true;
273
__sync_fetch_and_add(&nr_highpri_queued, 1);
274
}
275
__sync_fetch_and_add(&nr_enqueued, 1);
276
}
277
278
/*
279
* The BPF queue map doesn't support removal and sched_ext can handle spurious
280
* dispatches. qmap_dequeue() is only used to collect statistics.
281
*/
282
void BPF_STRUCT_OPS(qmap_dequeue, struct task_struct *p, u64 deq_flags)
283
{
284
__sync_fetch_and_add(&nr_dequeued, 1);
285
if (deq_flags & SCX_DEQ_CORE_SCHED_EXEC)
286
__sync_fetch_and_add(&nr_core_sched_execed, 1);
287
}
288
289
static void update_core_sched_head_seq(struct task_struct *p)
290
{
291
int idx = weight_to_idx(p->scx.weight);
292
struct task_ctx *tctx;
293
294
if ((tctx = lookup_task_ctx(p)))
295
core_sched_head_seqs[idx] = tctx->core_sched_seq;
296
}
297
298
/*
299
* To demonstrate the use of scx_bpf_dsq_move(), implement silly selective
300
* priority boosting mechanism by scanning SHARED_DSQ looking for highpri tasks,
301
* moving them to HIGHPRI_DSQ and then consuming them first. This makes minor
302
* difference only when dsp_batch is larger than 1.
303
*
304
* scx_bpf_dispatch[_vtime]_from_dsq() are allowed both from ops.dispatch() and
305
* non-rq-lock holding BPF programs. As demonstration, this function is called
306
* from qmap_dispatch() and monitor_timerfn().
307
*/
308
static bool dispatch_highpri(bool from_timer)
309
{
310
struct task_struct *p;
311
s32 this_cpu = bpf_get_smp_processor_id();
312
313
/* scan SHARED_DSQ and move highpri tasks to HIGHPRI_DSQ */
314
bpf_for_each(scx_dsq, p, SHARED_DSQ, 0) {
315
static u64 highpri_seq;
316
struct task_ctx *tctx;
317
318
if (!(tctx = lookup_task_ctx(p)))
319
return false;
320
321
if (tctx->highpri) {
322
/* exercise the set_*() and vtime interface too */
323
__COMPAT_scx_bpf_dsq_move_set_slice(
324
BPF_FOR_EACH_ITER, slice_ns * 2);
325
__COMPAT_scx_bpf_dsq_move_set_vtime(
326
BPF_FOR_EACH_ITER, highpri_seq++);
327
__COMPAT_scx_bpf_dsq_move_vtime(
328
BPF_FOR_EACH_ITER, p, HIGHPRI_DSQ, 0);
329
}
330
}
331
332
/*
333
* Scan HIGHPRI_DSQ and dispatch until a task that can run on this CPU
334
* is found.
335
*/
336
bpf_for_each(scx_dsq, p, HIGHPRI_DSQ, 0) {
337
bool dispatched = false;
338
s32 cpu;
339
340
if (bpf_cpumask_test_cpu(this_cpu, p->cpus_ptr))
341
cpu = this_cpu;
342
else
343
cpu = scx_bpf_pick_any_cpu(p->cpus_ptr, 0);
344
345
if (__COMPAT_scx_bpf_dsq_move(BPF_FOR_EACH_ITER, p,
346
SCX_DSQ_LOCAL_ON | cpu,
347
SCX_ENQ_PREEMPT)) {
348
if (cpu == this_cpu) {
349
dispatched = true;
350
__sync_fetch_and_add(&nr_expedited_local, 1);
351
} else {
352
__sync_fetch_and_add(&nr_expedited_remote, 1);
353
}
354
if (from_timer)
355
__sync_fetch_and_add(&nr_expedited_from_timer, 1);
356
} else {
357
__sync_fetch_and_add(&nr_expedited_lost, 1);
358
}
359
360
if (dispatched)
361
return true;
362
}
363
364
return false;
365
}
366
367
void BPF_STRUCT_OPS(qmap_dispatch, s32 cpu, struct task_struct *prev)
368
{
369
struct task_struct *p;
370
struct cpu_ctx *cpuc;
371
struct task_ctx *tctx;
372
u32 zero = 0, batch = dsp_batch ?: 1;
373
void *fifo;
374
s32 i, pid;
375
376
if (dispatch_highpri(false))
377
return;
378
379
if (!nr_highpri_queued && scx_bpf_dsq_move_to_local(SHARED_DSQ))
380
return;
381
382
if (dsp_inf_loop_after && nr_dispatched > dsp_inf_loop_after) {
383
/*
384
* PID 2 should be kthreadd which should mostly be idle and off
385
* the scheduler. Let's keep dispatching it to force the kernel
386
* to call this function over and over again.
387
*/
388
p = bpf_task_from_pid(2);
389
if (p) {
390
scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL, slice_ns, 0);
391
bpf_task_release(p);
392
return;
393
}
394
}
395
396
if (!(cpuc = bpf_map_lookup_elem(&cpu_ctx_stor, &zero))) {
397
scx_bpf_error("failed to look up cpu_ctx");
398
return;
399
}
400
401
for (i = 0; i < 5; i++) {
402
/* Advance the dispatch cursor and pick the fifo. */
403
if (!cpuc->dsp_cnt) {
404
cpuc->dsp_idx = (cpuc->dsp_idx + 1) % 5;
405
cpuc->dsp_cnt = 1 << cpuc->dsp_idx;
406
}
407
408
fifo = bpf_map_lookup_elem(&queue_arr, &cpuc->dsp_idx);
409
if (!fifo) {
410
scx_bpf_error("failed to find ring %llu", cpuc->dsp_idx);
411
return;
412
}
413
414
/* Dispatch or advance. */
415
bpf_repeat(BPF_MAX_LOOPS) {
416
struct task_ctx *tctx;
417
418
if (bpf_map_pop_elem(fifo, &pid))
419
break;
420
421
p = bpf_task_from_pid(pid);
422
if (!p)
423
continue;
424
425
if (!(tctx = lookup_task_ctx(p))) {
426
bpf_task_release(p);
427
return;
428
}
429
430
if (tctx->highpri)
431
__sync_fetch_and_sub(&nr_highpri_queued, 1);
432
433
update_core_sched_head_seq(p);
434
__sync_fetch_and_add(&nr_dispatched, 1);
435
436
scx_bpf_dsq_insert(p, SHARED_DSQ, slice_ns, 0);
437
bpf_task_release(p);
438
439
batch--;
440
cpuc->dsp_cnt--;
441
if (!batch || !scx_bpf_dispatch_nr_slots()) {
442
if (dispatch_highpri(false))
443
return;
444
scx_bpf_dsq_move_to_local(SHARED_DSQ);
445
return;
446
}
447
if (!cpuc->dsp_cnt)
448
break;
449
}
450
451
cpuc->dsp_cnt = 0;
452
}
453
454
/*
455
* No other tasks. @prev will keep running. Update its core_sched_seq as
456
* if the task were enqueued and dispatched immediately.
457
*/
458
if (prev) {
459
tctx = bpf_task_storage_get(&task_ctx_stor, prev, 0, 0);
460
if (!tctx) {
461
scx_bpf_error("task_ctx lookup failed");
462
return;
463
}
464
465
tctx->core_sched_seq =
466
core_sched_tail_seqs[weight_to_idx(prev->scx.weight)]++;
467
}
468
}
469
470
void BPF_STRUCT_OPS(qmap_tick, struct task_struct *p)
471
{
472
struct cpu_ctx *cpuc;
473
u32 zero = 0;
474
int idx;
475
476
if (!(cpuc = bpf_map_lookup_elem(&cpu_ctx_stor, &zero))) {
477
scx_bpf_error("failed to look up cpu_ctx");
478
return;
479
}
480
481
/*
482
* Use the running avg of weights to select the target cpuperf level.
483
* This is a demonstration of the cpuperf feature rather than a
484
* practical strategy to regulate CPU frequency.
485
*/
486
cpuc->avg_weight = cpuc->avg_weight * 3 / 4 + p->scx.weight / 4;
487
idx = weight_to_idx(cpuc->avg_weight);
488
cpuc->cpuperf_target = qidx_to_cpuperf_target[idx];
489
490
scx_bpf_cpuperf_set(scx_bpf_task_cpu(p), cpuc->cpuperf_target);
491
}
492
493
/*
494
* The distance from the head of the queue scaled by the weight of the queue.
495
* The lower the number, the older the task and the higher the priority.
496
*/
497
static s64 task_qdist(struct task_struct *p)
498
{
499
int idx = weight_to_idx(p->scx.weight);
500
struct task_ctx *tctx;
501
s64 qdist;
502
503
tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0);
504
if (!tctx) {
505
scx_bpf_error("task_ctx lookup failed");
506
return 0;
507
}
508
509
qdist = tctx->core_sched_seq - core_sched_head_seqs[idx];
510
511
/*
512
* As queue index increments, the priority doubles. The queue w/ index 3
513
* is dispatched twice more frequently than 2. Reflect the difference by
514
* scaling qdists accordingly. Note that the shift amount needs to be
515
* flipped depending on the sign to avoid flipping priority direction.
516
*/
517
if (qdist >= 0)
518
return qdist << (4 - idx);
519
else
520
return qdist << idx;
521
}
522
523
/*
524
* This is called to determine the task ordering when core-sched is picking
525
* tasks to execute on SMT siblings and should encode about the same ordering as
526
* the regular scheduling path. Use the priority-scaled distances from the head
527
* of the queues to compare the two tasks which should be consistent with the
528
* dispatch path behavior.
529
*/
530
bool BPF_STRUCT_OPS(qmap_core_sched_before,
531
struct task_struct *a, struct task_struct *b)
532
{
533
return task_qdist(a) > task_qdist(b);
534
}
535
536
void BPF_STRUCT_OPS(qmap_cpu_release, s32 cpu, struct scx_cpu_release_args *args)
537
{
538
u32 cnt;
539
540
/*
541
* Called when @cpu is taken by a higher priority scheduling class. This
542
* makes @cpu no longer available for executing sched_ext tasks. As we
543
* don't want the tasks in @cpu's local dsq to sit there until @cpu
544
* becomes available again, re-enqueue them into the global dsq. See
545
* %SCX_ENQ_REENQ handling in qmap_enqueue().
546
*/
547
cnt = scx_bpf_reenqueue_local();
548
if (cnt)
549
__sync_fetch_and_add(&nr_reenqueued, cnt);
550
}
551
552
s32 BPF_STRUCT_OPS(qmap_init_task, struct task_struct *p,
553
struct scx_init_task_args *args)
554
{
555
if (p->tgid == disallow_tgid)
556
p->scx.disallow = true;
557
558
/*
559
* @p is new. Let's ensure that its task_ctx is available. We can sleep
560
* in this function and the following will automatically use GFP_KERNEL.
561
*/
562
if (bpf_task_storage_get(&task_ctx_stor, p, 0,
563
BPF_LOCAL_STORAGE_GET_F_CREATE))
564
return 0;
565
else
566
return -ENOMEM;
567
}
568
569
void BPF_STRUCT_OPS(qmap_dump, struct scx_dump_ctx *dctx)
570
{
571
s32 i, pid;
572
573
if (suppress_dump)
574
return;
575
576
bpf_for(i, 0, 5) {
577
void *fifo;
578
579
if (!(fifo = bpf_map_lookup_elem(&queue_arr, &i)))
580
return;
581
582
scx_bpf_dump("QMAP FIFO[%d]:", i);
583
584
/*
585
* Dump can be invoked anytime and there is no way to iterate in
586
* a non-destructive way. Pop and store in dump_store and then
587
* restore afterwards. If racing against new enqueues, ordering
588
* can get mixed up.
589
*/
590
bpf_repeat(4096) {
591
if (bpf_map_pop_elem(fifo, &pid))
592
break;
593
bpf_map_push_elem(&dump_store, &pid, 0);
594
scx_bpf_dump(" %d", pid);
595
}
596
597
bpf_repeat(4096) {
598
if (bpf_map_pop_elem(&dump_store, &pid))
599
break;
600
bpf_map_push_elem(fifo, &pid, 0);
601
}
602
603
scx_bpf_dump("\n");
604
}
605
}
606
607
void BPF_STRUCT_OPS(qmap_dump_cpu, struct scx_dump_ctx *dctx, s32 cpu, bool idle)
608
{
609
u32 zero = 0;
610
struct cpu_ctx *cpuc;
611
612
if (suppress_dump || idle)
613
return;
614
if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, cpu)))
615
return;
616
617
scx_bpf_dump("QMAP: dsp_idx=%llu dsp_cnt=%llu avg_weight=%u cpuperf_target=%u",
618
cpuc->dsp_idx, cpuc->dsp_cnt, cpuc->avg_weight,
619
cpuc->cpuperf_target);
620
}
621
622
void BPF_STRUCT_OPS(qmap_dump_task, struct scx_dump_ctx *dctx, struct task_struct *p)
623
{
624
struct task_ctx *taskc;
625
626
if (suppress_dump)
627
return;
628
if (!(taskc = bpf_task_storage_get(&task_ctx_stor, p, 0, 0)))
629
return;
630
631
scx_bpf_dump("QMAP: force_local=%d core_sched_seq=%llu",
632
taskc->force_local, taskc->core_sched_seq);
633
}
634
635
s32 BPF_STRUCT_OPS(qmap_cgroup_init, struct cgroup *cgrp, struct scx_cgroup_init_args *args)
636
{
637
if (print_msgs)
638
bpf_printk("CGRP INIT %llu weight=%u period=%lu quota=%ld burst=%lu",
639
cgrp->kn->id, args->weight, args->bw_period_us,
640
args->bw_quota_us, args->bw_burst_us);
641
return 0;
642
}
643
644
void BPF_STRUCT_OPS(qmap_cgroup_set_weight, struct cgroup *cgrp, u32 weight)
645
{
646
if (print_msgs)
647
bpf_printk("CGRP SET %llu weight=%u", cgrp->kn->id, weight);
648
}
649
650
void BPF_STRUCT_OPS(qmap_cgroup_set_bandwidth, struct cgroup *cgrp,
651
u64 period_us, u64 quota_us, u64 burst_us)
652
{
653
if (print_msgs)
654
bpf_printk("CGRP SET %llu period=%lu quota=%ld burst=%lu",
655
cgrp->kn->id, period_us, quota_us, burst_us);
656
}
657
658
/*
659
* Print out the online and possible CPU map using bpf_printk() as a
660
* demonstration of using the cpumask kfuncs and ops.cpu_on/offline().
661
*/
662
static void print_cpus(void)
663
{
664
const struct cpumask *possible, *online;
665
s32 cpu;
666
char buf[128] = "", *p;
667
int idx;
668
669
possible = scx_bpf_get_possible_cpumask();
670
online = scx_bpf_get_online_cpumask();
671
672
idx = 0;
673
bpf_for(cpu, 0, scx_bpf_nr_cpu_ids()) {
674
if (!(p = MEMBER_VPTR(buf, [idx++])))
675
break;
676
if (bpf_cpumask_test_cpu(cpu, online))
677
*p++ = 'O';
678
else if (bpf_cpumask_test_cpu(cpu, possible))
679
*p++ = 'X';
680
else
681
*p++ = ' ';
682
683
if ((cpu & 7) == 7) {
684
if (!(p = MEMBER_VPTR(buf, [idx++])))
685
break;
686
*p++ = '|';
687
}
688
}
689
buf[sizeof(buf) - 1] = '\0';
690
691
scx_bpf_put_cpumask(online);
692
scx_bpf_put_cpumask(possible);
693
694
bpf_printk("CPUS: |%s", buf);
695
}
696
697
void BPF_STRUCT_OPS(qmap_cpu_online, s32 cpu)
698
{
699
if (print_msgs) {
700
bpf_printk("CPU %d coming online", cpu);
701
/* @cpu is already online at this point */
702
print_cpus();
703
}
704
}
705
706
void BPF_STRUCT_OPS(qmap_cpu_offline, s32 cpu)
707
{
708
if (print_msgs) {
709
bpf_printk("CPU %d going offline", cpu);
710
/* @cpu is still online at this point */
711
print_cpus();
712
}
713
}
714
715
struct monitor_timer {
716
struct bpf_timer timer;
717
};
718
719
struct {
720
__uint(type, BPF_MAP_TYPE_ARRAY);
721
__uint(max_entries, 1);
722
__type(key, u32);
723
__type(value, struct monitor_timer);
724
} monitor_timer SEC(".maps");
725
726
/*
727
* Print out the min, avg and max performance levels of CPUs every second to
728
* demonstrate the cpuperf interface.
729
*/
730
static void monitor_cpuperf(void)
731
{
732
u32 zero = 0, nr_cpu_ids;
733
u64 cap_sum = 0, cur_sum = 0, cur_min = SCX_CPUPERF_ONE, cur_max = 0;
734
u64 target_sum = 0, target_min = SCX_CPUPERF_ONE, target_max = 0;
735
const struct cpumask *online;
736
int i, nr_online_cpus = 0;
737
738
nr_cpu_ids = scx_bpf_nr_cpu_ids();
739
online = scx_bpf_get_online_cpumask();
740
741
bpf_for(i, 0, nr_cpu_ids) {
742
struct cpu_ctx *cpuc;
743
u32 cap, cur;
744
745
if (!bpf_cpumask_test_cpu(i, online))
746
continue;
747
nr_online_cpus++;
748
749
/* collect the capacity and current cpuperf */
750
cap = scx_bpf_cpuperf_cap(i);
751
cur = scx_bpf_cpuperf_cur(i);
752
753
cur_min = cur < cur_min ? cur : cur_min;
754
cur_max = cur > cur_max ? cur : cur_max;
755
756
/*
757
* $cur is relative to $cap. Scale it down accordingly so that
758
* it's in the same scale as other CPUs and $cur_sum/$cap_sum
759
* makes sense.
760
*/
761
cur_sum += cur * cap / SCX_CPUPERF_ONE;
762
cap_sum += cap;
763
764
if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, i))) {
765
scx_bpf_error("failed to look up cpu_ctx");
766
goto out;
767
}
768
769
/* collect target */
770
cur = cpuc->cpuperf_target;
771
target_sum += cur;
772
target_min = cur < target_min ? cur : target_min;
773
target_max = cur > target_max ? cur : target_max;
774
}
775
776
cpuperf_min = cur_min;
777
cpuperf_avg = cur_sum * SCX_CPUPERF_ONE / cap_sum;
778
cpuperf_max = cur_max;
779
780
cpuperf_target_min = target_min;
781
cpuperf_target_avg = target_sum / nr_online_cpus;
782
cpuperf_target_max = target_max;
783
out:
784
scx_bpf_put_cpumask(online);
785
}
786
787
/*
788
* Dump the currently queued tasks in the shared DSQ to demonstrate the usage of
789
* scx_bpf_dsq_nr_queued() and DSQ iterator. Raise the dispatch batch count to
790
* see meaningful dumps in the trace pipe.
791
*/
792
static void dump_shared_dsq(void)
793
{
794
struct task_struct *p;
795
s32 nr;
796
797
if (!(nr = scx_bpf_dsq_nr_queued(SHARED_DSQ)))
798
return;
799
800
bpf_printk("Dumping %d tasks in SHARED_DSQ in reverse order", nr);
801
802
bpf_rcu_read_lock();
803
bpf_for_each(scx_dsq, p, SHARED_DSQ, SCX_DSQ_ITER_REV)
804
bpf_printk("%s[%d]", p->comm, p->pid);
805
bpf_rcu_read_unlock();
806
}
807
808
static int monitor_timerfn(void *map, int *key, struct bpf_timer *timer)
809
{
810
bpf_rcu_read_lock();
811
dispatch_highpri(true);
812
bpf_rcu_read_unlock();
813
814
monitor_cpuperf();
815
816
if (print_dsqs_and_events) {
817
struct scx_event_stats events;
818
819
dump_shared_dsq();
820
821
__COMPAT_scx_bpf_events(&events, sizeof(events));
822
823
bpf_printk("%35s: %lld", "SCX_EV_SELECT_CPU_FALLBACK",
824
scx_read_event(&events, SCX_EV_SELECT_CPU_FALLBACK));
825
bpf_printk("%35s: %lld", "SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE",
826
scx_read_event(&events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE));
827
bpf_printk("%35s: %lld", "SCX_EV_DISPATCH_KEEP_LAST",
828
scx_read_event(&events, SCX_EV_DISPATCH_KEEP_LAST));
829
bpf_printk("%35s: %lld", "SCX_EV_ENQ_SKIP_EXITING",
830
scx_read_event(&events, SCX_EV_ENQ_SKIP_EXITING));
831
bpf_printk("%35s: %lld", "SCX_EV_REFILL_SLICE_DFL",
832
scx_read_event(&events, SCX_EV_REFILL_SLICE_DFL));
833
bpf_printk("%35s: %lld", "SCX_EV_BYPASS_DURATION",
834
scx_read_event(&events, SCX_EV_BYPASS_DURATION));
835
bpf_printk("%35s: %lld", "SCX_EV_BYPASS_DISPATCH",
836
scx_read_event(&events, SCX_EV_BYPASS_DISPATCH));
837
bpf_printk("%35s: %lld", "SCX_EV_BYPASS_ACTIVATE",
838
scx_read_event(&events, SCX_EV_BYPASS_ACTIVATE));
839
}
840
841
bpf_timer_start(timer, ONE_SEC_IN_NS, 0);
842
return 0;
843
}
844
845
s32 BPF_STRUCT_OPS_SLEEPABLE(qmap_init)
846
{
847
u32 key = 0;
848
struct bpf_timer *timer;
849
s32 ret;
850
851
if (print_msgs)
852
print_cpus();
853
854
ret = scx_bpf_create_dsq(SHARED_DSQ, -1);
855
if (ret)
856
return ret;
857
858
ret = scx_bpf_create_dsq(HIGHPRI_DSQ, -1);
859
if (ret)
860
return ret;
861
862
timer = bpf_map_lookup_elem(&monitor_timer, &key);
863
if (!timer)
864
return -ESRCH;
865
866
bpf_timer_init(timer, &monitor_timer, CLOCK_MONOTONIC);
867
bpf_timer_set_callback(timer, monitor_timerfn);
868
869
return bpf_timer_start(timer, ONE_SEC_IN_NS, 0);
870
}
871
872
void BPF_STRUCT_OPS(qmap_exit, struct scx_exit_info *ei)
873
{
874
UEI_RECORD(uei, ei);
875
}
876
877
SCX_OPS_DEFINE(qmap_ops,
878
.select_cpu = (void *)qmap_select_cpu,
879
.enqueue = (void *)qmap_enqueue,
880
.dequeue = (void *)qmap_dequeue,
881
.dispatch = (void *)qmap_dispatch,
882
.tick = (void *)qmap_tick,
883
.core_sched_before = (void *)qmap_core_sched_before,
884
.cpu_release = (void *)qmap_cpu_release,
885
.init_task = (void *)qmap_init_task,
886
.dump = (void *)qmap_dump,
887
.dump_cpu = (void *)qmap_dump_cpu,
888
.dump_task = (void *)qmap_dump_task,
889
.cgroup_init = (void *)qmap_cgroup_init,
890
.cgroup_set_weight = (void *)qmap_cgroup_set_weight,
891
.cgroup_set_bandwidth = (void *)qmap_cgroup_set_bandwidth,
892
.cpu_online = (void *)qmap_cpu_online,
893
.cpu_offline = (void *)qmap_cpu_offline,
894
.init = (void *)qmap_init,
895
.exit = (void *)qmap_exit,
896
.timeout_ms = 5000U,
897
.name = "qmap");
898
899