Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
trixi-framework
GitHub Repository: trixi-framework/Trixi.jl
Path: blob/main/benchmark/elixir_2d_euler_vortex_p4est.jl
2055 views
1
2
using OrdinaryDiffEqLowOrderRK
3
using Trixi
4
5
###############################################################################
6
# semidiscretization of the compressible Euler equations
7
8
equations = CompressibleEulerEquations2D(1.4)
9
10
"""
11
initial_condition_isentropic_vortex(x, t, equations::CompressibleEulerEquations2D)
12
13
The classical isentropic vortex test case of
14
- Chi-Wang Shu (1997)
15
Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory
16
Schemes for Hyperbolic Conservation Laws
17
[NASA/CR-97-206253](https://ntrs.nasa.gov/citations/19980007543)
18
"""
19
function initial_condition_isentropic_vortex(x, t, equations::CompressibleEulerEquations2D)
20
# needs appropriate mesh size, e.g. [-10,-10]x[10,10]
21
# make sure that the inicenter does not exit the domain, e.g. T=10.0
22
# initial center of the vortex
23
inicenter = SVector(0.0, 0.0)
24
# size and strength of the vortex
25
iniamplitude = 0.2
26
# base flow
27
rho = 1.0
28
v1 = 1.0
29
v2 = 1.0
30
vel = SVector(v1, v2)
31
p = 10.0
32
rt = p / rho # ideal gas equation
33
cent = inicenter + vel * t # advection of center
34
cent = x - cent # distance to centerpoint
35
#cent=cross(iniaxis,cent) # distance to axis, tangent vector, length r
36
# cross product with iniaxis = [0,0,1]
37
cent = SVector(-cent[2], cent[1])
38
r2 = cent[1]^2 + cent[2]^2
39
du = iniamplitude / (2 * π) * exp(0.5 * (1 - r2)) # vel. perturbation
40
dtemp = -(equations.gamma - 1) / (2 * equations.gamma * rt) * du^2 # isentrop
41
rho = rho * (1 + dtemp)^(1 \ (equations.gamma - 1))
42
vel = vel + du * cent
43
v1, v2 = vel
44
p = p * (1 + dtemp)^(equations.gamma / (equations.gamma - 1))
45
prim = SVector(rho, v1, v2, p)
46
return prim2cons(prim, equations)
47
end
48
initial_condition = initial_condition_isentropic_vortex
49
solver = DGSEM(polydeg = 3, surface_flux = flux_lax_friedrichs)
50
51
coordinates_min = (-10.0, -10.0)
52
coordinates_max = (10.0, 10.0)
53
mesh = P4estMesh((1, 1), polydeg = Trixi.polydeg(solver),
54
coordinates_min = coordinates_min, coordinates_max = coordinates_max,
55
initial_refinement_level = 4)
56
57
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)
58
59
###############################################################################
60
# ODE solvers, callbacks etc.
61
62
tspan = (0.0, 20.0)
63
ode = semidiscretize(semi, tspan)
64
65
summary_callback = SummaryCallback()
66
67
analysis_interval = 100
68
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
69
save_analysis = true,
70
extra_analysis_errors = (:conservation_error,),
71
extra_analysis_integrals = (entropy, energy_total,
72
energy_kinetic,
73
energy_internal))
74
75
alive_callback = AliveCallback(analysis_interval = analysis_interval)
76
77
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback)
78
79
###############################################################################
80
# run the simulation
81
82
sol = solve(ode, BS3();
83
ode_default_options()..., callback = callbacks);
84
summary_callback() # print the timer summary
85
86