Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
trixi-framework
GitHub Repository: trixi-framework/Trixi.jl
Path: blob/main/examples/dgmulti_3d/elixir_navierstokes_convergence.jl
2055 views
1
using OrdinaryDiffEqLowStorageRK
2
using Trixi
3
4
###############################################################################
5
# semidiscretization of the ideal compressible Navier-Stokes equations
6
7
prandtl_number() = 0.72
8
mu() = 0.01
9
10
equations = CompressibleEulerEquations3D(1.4)
11
equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu(),
12
Prandtl = prandtl_number(),
13
gradient_variables = GradientVariablesPrimitive())
14
15
# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
16
17
# Up to version 0.13.0, `max_abs_speed_naive` was used as the default wave speed estimate of
18
# `const flux_lax_friedrichs = FluxLaxFriedrichs(), i.e., `FluxLaxFriedrichs(max_abs_speed = max_abs_speed_naive)`.
19
# In the `StepsizeCallback`, though, the less diffusive `max_abs_speeds` is employed which is consistent with `max_abs_speed`.
20
# Thus, we exchanged in PR#2458 the default wave speed used in the LLF flux to `max_abs_speed`.
21
# To ensure that every example still runs we specify explicitly `FluxLaxFriedrichs(max_abs_speed_naive)`.
22
# We remark, however, that the now default `max_abs_speed` is in general recommended due to compliance with the
23
# `StepsizeCallback` (CFL-Condition) and less diffusion.
24
dg = DGMulti(polydeg = 3, element_type = Hex(), approximation_type = Polynomial(),
25
surface_integral = SurfaceIntegralWeakForm(FluxLaxFriedrichs(max_abs_speed_naive)),
26
volume_integral = VolumeIntegralWeakForm())
27
28
top_bottom(x, tol = 50 * eps()) = abs(abs(x[2]) - 1) < tol
29
is_on_boundary = Dict(:top_bottom => top_bottom)
30
31
cells_per_dimension = (8, 8, 8)
32
mesh = DGMultiMesh(dg, cells_per_dimension; periodicity = (true, false, true),
33
is_on_boundary)
34
35
# Note: the initial condition cannot be specialized to `CompressibleNavierStokesDiffusion3D`
36
# since it is called by both the parabolic solver (which passes in `CompressibleNavierStokesDiffusion3D`)
37
# and by the initial condition (which passes in `CompressibleEulerEquations3D`).
38
# This convergence test setup was originally derived by Andrew Winters (@andrewwinters5000)
39
function initial_condition_navier_stokes_convergence_test(x, t, equations)
40
# Constants. OBS! Must match those in `source_terms_navier_stokes_convergence_test`
41
c = 2.0
42
A1 = 0.5
43
A2 = 1.0
44
A3 = 0.5
45
46
# Convenience values for trig. functions
47
pi_x = pi * x[1]
48
pi_y = pi * x[2]
49
pi_z = pi * x[3]
50
pi_t = pi * t
51
52
rho = c + A1 * sin(pi_x) * cos(pi_y) * sin(pi_z) * cos(pi_t)
53
v1 = A2 * sin(pi_x) * log(x[2] + 2.0) * (1.0 - exp(-A3 * (x[2] - 1.0))) * sin(pi_z) *
54
cos(pi_t)
55
v2 = v1
56
v3 = v1
57
p = rho^2
58
59
return prim2cons(SVector(rho, v1, v2, v3, p), equations)
60
end
61
62
@inline function source_terms_navier_stokes_convergence_test(u, x, t, equations)
63
# TODO: parabolic
64
# we currently need to hardcode these parameters until we fix the "combined equation" issue
65
# see also https://github.com/trixi-framework/Trixi.jl/pull/1160
66
inv_gamma_minus_one = inv(equations.gamma - 1)
67
Pr = prandtl_number()
68
mu_ = mu()
69
70
# Constants. OBS! Must match those in `initial_condition_navier_stokes_convergence_test`
71
c = 2.0
72
A1 = 0.5
73
A2 = 1.0
74
A3 = 0.5
75
76
# Convenience values for trig. functions
77
pi_x = pi * x[1]
78
pi_y = pi * x[2]
79
pi_z = pi * x[3]
80
pi_t = pi * t
81
82
# Define auxiliary functions for the strange function of the y variable
83
# to make expressions easier to read
84
g = log(x[2] + 2.0) * (1.0 - exp(-A3 * (x[2] - 1.0)))
85
g_y = (A3 * log(x[2] + 2.0) * exp(-A3 * (x[2] - 1.0)) +
86
(1.0 - exp(-A3 * (x[2] - 1.0))) / (x[2] + 2.0))
87
g_yy = (2.0 * A3 * exp(-A3 * (x[2] - 1.0)) / (x[2] + 2.0) -
88
(1.0 - exp(-A3 * (x[2] - 1.0))) / ((x[2] + 2.0)^2) -
89
A3^2 * log(x[2] + 2.0) * exp(-A3 * (x[2] - 1.0)))
90
91
# Density and its derivatives
92
rho = c + A1 * sin(pi_x) * cos(pi_y) * sin(pi_z) * cos(pi_t)
93
rho_t = -pi * A1 * sin(pi_x) * cos(pi_y) * sin(pi_z) * sin(pi_t)
94
rho_x = pi * A1 * cos(pi_x) * cos(pi_y) * sin(pi_z) * cos(pi_t)
95
rho_y = -pi * A1 * sin(pi_x) * sin(pi_y) * sin(pi_z) * cos(pi_t)
96
rho_z = pi * A1 * sin(pi_x) * cos(pi_y) * cos(pi_z) * cos(pi_t)
97
rho_xx = -pi^2 * (rho - c)
98
rho_yy = -pi^2 * (rho - c)
99
rho_zz = -pi^2 * (rho - c)
100
101
# Velocities and their derivatives
102
# v1 terms
103
v1 = A2 * sin(pi_x) * g * sin(pi_z) * cos(pi_t)
104
v1_t = -pi * A2 * sin(pi_x) * g * sin(pi_z) * sin(pi_t)
105
v1_x = pi * A2 * cos(pi_x) * g * sin(pi_z) * cos(pi_t)
106
v1_y = A2 * sin(pi_x) * g_y * sin(pi_z) * cos(pi_t)
107
v1_z = pi * A2 * sin(pi_x) * g * cos(pi_z) * cos(pi_t)
108
v1_xx = -pi^2 * v1
109
v1_yy = A2 * sin(pi_x) * g_yy * sin(pi_z) * cos(pi_t)
110
v1_zz = -pi^2 * v1
111
v1_xy = pi * A2 * cos(pi_x) * g_y * sin(pi_z) * cos(pi_t)
112
v1_xz = pi^2 * A2 * cos(pi_x) * g * cos(pi_z) * cos(pi_t)
113
v1_yz = pi * A2 * sin(pi_x) * g_y * cos(pi_z) * cos(pi_t)
114
# v2 terms (simplifies from ansatz)
115
v2 = v1
116
v2_t = v1_t
117
v2_x = v1_x
118
v2_y = v1_y
119
v2_z = v1_z
120
v2_xx = v1_xx
121
v2_yy = v1_yy
122
v2_zz = v1_zz
123
v2_xy = v1_xy
124
v2_yz = v1_yz
125
# v3 terms (simplifies from ansatz)
126
v3 = v1
127
v3_t = v1_t
128
v3_x = v1_x
129
v3_y = v1_y
130
v3_z = v1_z
131
v3_xx = v1_xx
132
v3_yy = v1_yy
133
v3_zz = v1_zz
134
v3_xz = v1_xz
135
v3_yz = v1_yz
136
137
# Pressure and its derivatives
138
p = rho^2
139
p_t = 2.0 * rho * rho_t
140
p_x = 2.0 * rho * rho_x
141
p_y = 2.0 * rho * rho_y
142
p_z = 2.0 * rho * rho_z
143
144
# Total energy and its derivatives; simiplifies from ansatz that v2 = v1 and v3 = v1
145
E = p * inv_gamma_minus_one + 1.5 * rho * v1^2
146
E_t = p_t * inv_gamma_minus_one + 1.5 * rho_t * v1^2 + 3.0 * rho * v1 * v1_t
147
E_x = p_x * inv_gamma_minus_one + 1.5 * rho_x * v1^2 + 3.0 * rho * v1 * v1_x
148
E_y = p_y * inv_gamma_minus_one + 1.5 * rho_y * v1^2 + 3.0 * rho * v1 * v1_y
149
E_z = p_z * inv_gamma_minus_one + 1.5 * rho_z * v1^2 + 3.0 * rho * v1 * v1_z
150
151
# Divergence of Fick's law ∇⋅∇q = kappa ∇⋅∇T; simplifies because p = rho², so T = p/rho = rho
152
kappa = equations.gamma * inv_gamma_minus_one / Pr
153
q_xx = kappa * rho_xx # kappa T_xx
154
q_yy = kappa * rho_yy # kappa T_yy
155
q_zz = kappa * rho_zz # kappa T_zz
156
157
# Stress tensor and its derivatives (exploit symmetry)
158
tau11 = 4.0 / 3.0 * v1_x - 2.0 / 3.0 * (v2_y + v3_z)
159
tau12 = v1_y + v2_x
160
tau13 = v1_z + v3_x
161
tau22 = 4.0 / 3.0 * v2_y - 2.0 / 3.0 * (v1_x + v3_z)
162
tau23 = v2_z + v3_y
163
tau33 = 4.0 / 3.0 * v3_z - 2.0 / 3.0 * (v1_x + v2_y)
164
165
tau11_x = 4.0 / 3.0 * v1_xx - 2.0 / 3.0 * (v2_xy + v3_xz)
166
tau12_x = v1_xy + v2_xx
167
tau13_x = v1_xz + v3_xx
168
169
tau12_y = v1_yy + v2_xy
170
tau22_y = 4.0 / 3.0 * v2_yy - 2.0 / 3.0 * (v1_xy + v3_yz)
171
tau23_y = v2_yz + v3_yy
172
173
tau13_z = v1_zz + v3_xz
174
tau23_z = v2_zz + v3_yz
175
tau33_z = 4.0 / 3.0 * v3_zz - 2.0 / 3.0 * (v1_xz + v2_yz)
176
177
# Compute the source terms
178
# Density equation
179
du1 = (rho_t + rho_x * v1 + rho * v1_x
180
+ rho_y * v2 + rho * v2_y
181
+ rho_z * v3 + rho * v3_z)
182
# x-momentum equation
183
du2 = (rho_t * v1 + rho * v1_t + p_x + rho_x * v1^2
184
+ 2.0 * rho * v1 * v1_x
185
+ rho_y * v1 * v2
186
+ rho * v1_y * v2
187
+ rho * v1 * v2_y
188
+ rho_z * v1 * v3
189
+ rho * v1_z * v3
190
+ rho * v1 * v3_z -
191
mu_ * (tau11_x + tau12_y + tau13_z))
192
# y-momentum equation
193
du3 = (rho_t * v2 + rho * v2_t + p_y + rho_x * v1 * v2
194
+ rho * v1_x * v2
195
+ rho * v1 * v2_x
196
+ rho_y * v2^2
197
+ 2.0 * rho * v2 * v2_y
198
+ rho_z * v2 * v3
199
+ rho * v2_z * v3
200
+ rho * v2 * v3_z -
201
mu_ * (tau12_x + tau22_y + tau23_z))
202
# z-momentum equation
203
du4 = (rho_t * v3 + rho * v3_t + p_z + rho_x * v1 * v3
204
+ rho * v1_x * v3
205
+ rho * v1 * v3_x
206
+ rho_y * v2 * v3
207
+ rho * v2_y * v3
208
+ rho * v2 * v3_y
209
+ rho_z * v3^2
210
+ 2.0 * rho * v3 * v3_z -
211
mu_ * (tau13_x + tau23_y + tau33_z))
212
# Total energy equation
213
du5 = (E_t + v1_x * (E + p) + v1 * (E_x + p_x)
214
+ v2_y * (E + p) + v2 * (E_y + p_y)
215
+ v3_z * (E + p) + v3 * (E_z + p_z) -
216
# stress tensor and temperature gradient from x-direction
217
mu_ * (q_xx + v1_x * tau11 + v2_x * tau12 + v3_x * tau13
218
+ v1 * tau11_x + v2 * tau12_x + v3 * tau13_x) -
219
# stress tensor and temperature gradient terms from y-direction
220
mu_ * (q_yy + v1_y * tau12 + v2_y * tau22 + v3_y * tau23
221
+ v1 * tau12_y + v2 * tau22_y + v3 * tau23_y) -
222
# stress tensor and temperature gradient terms from z-direction
223
mu_ * (q_zz + v1_z * tau13 + v2_z * tau23 + v3_z * tau33
224
+ v1 * tau13_z + v2 * tau23_z + v3 * tau33_z))
225
226
return SVector(du1, du2, du3, du4, du5)
227
end
228
229
initial_condition = initial_condition_navier_stokes_convergence_test
230
231
# BC types
232
velocity_bc_top_bottom = NoSlip() do x, t, equations_parabolic
233
u_cons = initial_condition_navier_stokes_convergence_test(x, t, equations_parabolic)
234
return SVector(u_cons[2] / u_cons[1], u_cons[3] / u_cons[1], u_cons[4] / u_cons[1])
235
end
236
237
heat_bc_top_bottom = Adiabatic((x, t, equations_parabolic) -> 0.0)
238
boundary_condition_top_bottom = BoundaryConditionNavierStokesWall(velocity_bc_top_bottom,
239
heat_bc_top_bottom)
240
241
# define inviscid boundary conditions
242
boundary_conditions = (; :top_bottom => boundary_condition_slip_wall)
243
244
# define viscous boundary conditions
245
boundary_conditions_parabolic = (; :top_bottom => boundary_condition_top_bottom)
246
247
semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic),
248
initial_condition, dg;
249
boundary_conditions = (boundary_conditions,
250
boundary_conditions_parabolic),
251
source_terms = source_terms_navier_stokes_convergence_test)
252
253
###############################################################################
254
# ODE solvers, callbacks etc.
255
256
# Create ODE problem with time span `tspan`
257
tspan = (0.0, 1.0)
258
ode = semidiscretize(semi, tspan)
259
260
summary_callback = SummaryCallback()
261
alive_callback = AliveCallback(alive_interval = 10)
262
analysis_interval = 100
263
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, uEltype = real(dg))
264
save_solution = SaveSolutionCallback(interval = analysis_interval,
265
solution_variables = cons2prim)
266
callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback, save_solution)
267
268
###############################################################################
269
# run the simulation
270
271
time_int_tol = 1e-8
272
sol = solve(ode, RDPK3SpFSAL49(); abstol = time_int_tol, reltol = time_int_tol,
273
ode_default_options()..., callback = callbacks)
274
275