Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
trixi-framework
GitHub Repository: trixi-framework/Trixi.jl
Path: blob/main/examples/t8code_3d_dgsem/elixir_advection_basic.jl
2055 views
1
# The same setup as tree_3d_dgsem/elixir_advection_basic.jl
2
# to verify the T8codeMesh implementation against TreeMesh
3
4
using OrdinaryDiffEqLowStorageRK
5
using Trixi
6
7
###############################################################################
8
# semidiscretization of the linear advection equation
9
10
advection_velocity = (0.2, -0.7, 0.5)
11
equations = LinearScalarAdvectionEquation3D(advection_velocity)
12
13
# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
14
solver = DGSEM(polydeg = 3, surface_flux = flux_lax_friedrichs)
15
16
coordinates_min = (-1.0, -1.0, -1.0) # minimum coordinates (min(x), min(y), min(z))
17
coordinates_max = (1.0, 1.0, 1.0) # maximum coordinates (max(x), max(y), max(z))
18
19
# Create P4estMesh with 8 x 8 x 8 elements (note `refinement_level=1`)
20
trees_per_dimension = (4, 4, 4)
21
mesh = T8codeMesh(trees_per_dimension, polydeg = 3,
22
coordinates_min = coordinates_min, coordinates_max = coordinates_max,
23
initial_refinement_level = 1)
24
25
# A semidiscretization collects data structures and functions for the spatial discretization
26
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition_convergence_test,
27
solver)
28
29
###############################################################################
30
# ODE solvers, callbacks etc.
31
32
# Create ODE problem with time span from 0.0 to 1.0
33
tspan = (0.0, 1.0)
34
ode = semidiscretize(semi, tspan)
35
36
# At the beginning of the main loop, the SummaryCallback prints a summary of the simulation setup
37
# and resets the timers
38
summary_callback = SummaryCallback()
39
40
# The AnalysisCallback allows to analyse the solution in regular intervals and prints the results
41
analysis_callback = AnalysisCallback(semi, interval = 100)
42
43
# The SaveRestartCallback allows to save a file from which a Trixi.jl simulation can be restarted
44
save_restart = SaveRestartCallback(interval = 100,
45
save_final_restart = true)
46
47
# The SaveSolutionCallback allows to save the solution to a file in regular intervals
48
save_solution = SaveSolutionCallback(interval = 100,
49
solution_variables = cons2prim)
50
51
# The StepsizeCallback handles the re-calculation of the maximum Δt after each time step
52
stepsize_callback = StepsizeCallback(cfl = 1.2)
53
54
# Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver
55
callbacks = CallbackSet(summary_callback, analysis_callback, save_restart, save_solution,
56
stepsize_callback)
57
58
###############################################################################
59
# run the simulation
60
61
# OrdinaryDiffEq's `solve` method evolves the solution in time and executes the passed callbacks
62
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false);
63
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
64
ode_default_options()..., callback = callbacks);
65
66