Path: blob/main/examples/t8code_3d_dgsem/elixir_advection_nonconforming.jl
2055 views
using OrdinaryDiffEqLowStorageRK1using Trixi23###############################################################################4# Semidiscretization of the linear advection equation.56advection_velocity = (0.2, -0.7, 0.5)7equations = LinearScalarAdvectionEquation3D(advection_velocity)89# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux.10solver = DGSEM(polydeg = 3, surface_flux = flux_lax_friedrichs)1112coordinates_min = (-1.0, -1.0, -1.0) # minimum coordinates (min(x), min(y), min(z))13coordinates_max = (1.0, 1.0, 1.0) # maximum coordinates (max(x), max(y), max(z))14trees_per_dimension = (1, 1, 1)1516# Note that it is not necessary to use mesh polydeg lower than the solver polydeg17# on a Cartesian mesh.18# See https://doi.org/10.1007/s10915-018-00897-9, Section 6.19mesh = T8codeMesh(trees_per_dimension, polydeg = 3,20coordinates_min = coordinates_min, coordinates_max = coordinates_max,21initial_refinement_level = 2)2223# Note: This is actually a `p8est_quadrant_t` which is much bigger than the24# following struct. But we only need the first four fields for our purpose.25struct t8_dhex_t26x::Int3227y::Int3228z::Int3229level::Int830# [...] # See `p8est.h` in `p4est` for more info.31end3233# Refine bottom left quadrant of each second tree to level 234function adapt_callback(forest, ltreeid, eclass_scheme, lelemntid, elements, is_family,35user_data)36el = unsafe_load(Ptr{t8_dhex_t}(elements[1]))3738if iseven(convert(Int, ltreeid)) && el.x == 0 && el.y == 0 && el.z == 0 &&39el.level < 340# return true (refine)41return 142else43# return false (don't refine)44return 045end46end4748Trixi.adapt!(mesh, adapt_callback)4950# A semidiscretization collects data structures and functions for the spatial discretization51semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition_convergence_test,52solver)5354###############################################################################55# ODE solvers, callbacks etc.5657# Create ODE problem with time span from 0.0 to 1.058tspan = (0.0, 1.0)59ode = semidiscretize(semi, tspan)6061# At the beginning of the main loop, the SummaryCallback prints a summary of the simulation setup62# and resets the timers63summary_callback = SummaryCallback()6465# The AnalysisCallback allows to analyse the solution in regular intervals and prints the results66analysis_callback = AnalysisCallback(semi, interval = 100)6768# The SaveSolutionCallback allows to save the solution to a file in regular intervals69save_solution = SaveSolutionCallback(interval = 100,70solution_variables = cons2prim)7172# The StepsizeCallback handles the re-calculation of the maximum Δt after each time step73stepsize_callback = StepsizeCallback(cfl = 1.6)7475# Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver76callbacks = CallbackSet(summary_callback, analysis_callback, save_solution,77stepsize_callback)7879###############################################################################80# run the simulation8182# OrdinaryDiffEq's `solve` method evolves the solution in time and executes the passed callbacks83sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false);84dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback85ode_default_options()..., callback = callbacks);868788