Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
trixi-framework
GitHub Repository: trixi-framework/Trixi.jl
Path: blob/main/examples/tree_2d_dgsem/elixir_acoustics_convergence.jl
2055 views
1
using OrdinaryDiffEqLowStorageRK
2
using Trixi
3
4
###############################################################################
5
# semidiscretization of the acoustic perturbation equations
6
7
equations = AcousticPerturbationEquations2D(v_mean_global = (0.5, 0.3), c_mean_global = 2.0,
8
rho_mean_global = 0.9)
9
10
initial_condition = initial_condition_convergence_test
11
12
# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
13
14
# Up to version 0.13.0, `max_abs_speed_naive` was used as the default wave speed estimate of
15
# `const flux_lax_friedrichs = FluxLaxFriedrichs(), i.e., `FluxLaxFriedrichs(max_abs_speed = max_abs_speed_naive)`.
16
# In the `StepsizeCallback`, though, the less diffusive `max_abs_speeds` is employed which is consistent with `max_abs_speed`.
17
# Thus, we exchanged in PR#2458 the default wave speed used in the LLF flux to `max_abs_speed`.
18
# To ensure that every example still runs we specify explicitly `FluxLaxFriedrichs(max_abs_speed_naive)`.
19
# We remark, however, that the now default `max_abs_speed` is in general recommended due to compliance with the
20
# `StepsizeCallback` (CFL-Condition) and less diffusion.
21
solver = DGSEM(polydeg = 3, surface_flux = FluxLaxFriedrichs(max_abs_speed_naive))
22
23
coordinates_min = (0.0, 0.0) # minimum coordinates (min(x), min(y))
24
coordinates_max = (2.0, 2.0) # maximum coordinates (max(x), max(y))
25
26
# Create a uniformly refined mesh with periodic boundaries
27
mesh = TreeMesh(coordinates_min, coordinates_max,
28
initial_refinement_level = 3,
29
n_cells_max = 30_000) # set maximum capacity of tree data structure
30
31
# A semidiscretization collects data structures and functions for the spatial discretization
32
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
33
source_terms = source_terms_convergence_test)
34
35
###############################################################################
36
# ODE solvers, callbacks etc.
37
38
# Create ODE problem with time span from 0.0 to 1.0
39
tspan = (0.0, 1.0)
40
ode = semidiscretize(semi, tspan)
41
42
# At the beginning of the main loop, the SummaryCallback prints a summary of the simulation setup
43
# and resets the timers
44
summary_callback = SummaryCallback()
45
46
# The AnalysisCallback allows to analyse the solution in regular intervals and prints the results
47
analysis_callback = AnalysisCallback(semi, interval = 100)
48
49
# The SaveSolutionCallback allows to save the solution to a file in regular intervals
50
save_solution = SaveSolutionCallback(interval = 100,
51
solution_variables = cons2prim)
52
53
# The StepsizeCallback handles the re-calculation of the maximum Δt after each time step
54
stepsize_callback = StepsizeCallback(cfl = 0.5)
55
56
# Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver
57
callbacks = CallbackSet(summary_callback, analysis_callback, save_solution,
58
stepsize_callback)
59
60
###############################################################################
61
# run the simulation
62
63
# OrdinaryDiffEq's `solve` method evolves the solution in time and executes the passed callbacks
64
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false);
65
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
66
ode_default_options()..., callback = callbacks);
67
68