Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/master/Convolutional Neural Networks/__pycache__/cnn_utils.cpython-36.pyc
Views: 13373
3 e��Y� � @ s\ d dl Z d dlZd dlZd dljZd dlZd dl m Z dd� Zddd�Zdd � Z d d� ZdS ) � N)�opsc C s� t jdd�} tj| d d d � �}tj| d d d � �}t jdd�}tj|d d d � �}tj|d d d � �}tj|d d d � �}|jd |jd f�}|jd |jd f�}|||||fS )Nzdatasets/train_signs.h5�r�train_set_x�train_set_yzdatasets/test_signs.h5� test_set_x� test_set_y�list_classes� r )�h5py�File�np�array�reshape�shape)� train_dataset�train_set_x_orig�train_set_y_orig�test_dataset�test_set_x_orig�test_set_y_orig�classes� r �/home/jovyan/work/cnn_utils.py�load_dataset s r �@ c C s6 | j d }g }tjj|� ttjj|��}| |dd�dd�dd�f }||dd�f }tj|| �} xptd| �D ]b} || | | | | �dd�dd�dd�f }|| | | | | �dd�f }||f} |j | � qpW || dk�r2|| | |�dd�dd�dd�f }|| | |�dd�f }||f} |j | � |S )a Creates a list of random minibatches from (X, Y) Arguments: X -- input data, of shape (input size, number of examples) (m, Hi, Wi, Ci) Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) (m, n_y) mini_batch_size - size of the mini-batches, integer seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours. Returns: mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y) r N) r r �random�seed�list�permutation�math�floor�range�append)�X�Y�mini_batch_sizer �m�mini_batchesr � shuffled_X� shuffled_Y�num_complete_minibatches�k�mini_batch_X�mini_batch_Y� mini_batchr r r �random_mini_batches s$ , $ r/ c C s t j|�| jd� j} | S )Nr �����)r �eyer �T)r$ �Cr r r �convert_to_one_hotB s r4 c C s� t j|d �}t j|d �}t j|d �}t j|d �}t j|d �}t j|d �}||||||d�}t jdd d g�} t| |�} t j| �}t j� �}|j|| | id�} W d Q R X | S )N�W1�b1�W2�b2�W3�b3)r5 r6 r7 r8 r9 r: �floati 0 r )� feed_dict)�tf�convert_to_tensor�placeholder�forward_propagation�argmax�Session�run)r# � parametersr5 r6 r7 r8 r9 r: �params�x�z3�p�sess� predictionr r r �predictH s$ rK )r r )r �numpyr r �matplotlib.pyplot�pyplot�plt� tensorflowr= �tensorflow.python.frameworkr r r/ r4 rK r r r r �<module> s )