CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
y33-j3T

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: y33-j3T/Coursera-Deep-Learning
Path: blob/master/Natural Language Processing with Attention Models/Week 1 - Neural Machine Translation/output_dir/train/events.out.tfevents.1608282144.fb630eec7870
Views: 13380
�K"	��A
brain.Event:2Wl�.��W�	#���A*!

metrics/CrossEntropyLossC�&A����s̮�P	�J��A*�
�

gin_configB�B�#### Parameters for Adam:

    Adam.b1 = 0.9
    Adam.b2 = 0.999
    Adam.clip_grad_norm = None
    Adam.eps = 1e-05
    Adam.weight_decay_rate = 1e-05
    
#### Parameters for AddLossWeights:

    # None.
    
#### Parameters for backend:

    backend.name = 'jax'
    
#### Parameters for BucketByLength:

    BucketByLength.length_axis = 0
    BucketByLength.strict_pad_on_len = False
    
#### Parameters for FilterByLength:

    FilterByLength.length_axis = 0
    
#### Parameters for LogSoftmax:

    LogSoftmax.axis = -1
    
#### Parameters for random_spans_helper:

    # None.
    
#### Parameters for SentencePieceVocabulary:

    # None.
    
#### Parameters for data.TFDS:

    # None.
    
#### Parameters for tf_inputs.TFDS:

    # None.
    
#### Parameters for data.Tokenize:

    # None.
    
#### Parameters for tf_inputs.Tokenize:

    tf_inputs.Tokenize.keys = None
    tf_inputs.Tokenize.n_reserved_ids = 0
    tf_inputs.Tokenize.vocab_type = 'subword'
    
#### Parameters for Vocabulary:

    # None.
    
#### Parameters for warmup_and_rsqrt_decay:

    # None.J

text1��K,���E	�W��A*

training/learning_rateĚ'7��ڜ/m]P	�X��A*"
 
training/steps per secondl�<C��+��K	�Y��A*

training/gradients_l28��?�[y�#��wC	\Z��A*


training/lossC�&A��,)7�_	�Z��A*

training/weights_l2��E�bH.��W�	�5�i��A
*!

metrics/CrossEntropyLosss$A�~;,���E	C�i��A
*

training/learning_rateu��8��g�/m]P	�C�i��A
*"
 
training/steps per second���<���+��K	�D�i��A
*

training/gradients_l2/�@XE1#��wC	GE�i��A
*


training/losss$A�AL])7�_	�E�i��A
*

training/weights_l2$��Es��g