Path: blob/master/Natural Language Processing with Attention Models/Week 4 - Chatbot/model/train/events.out.tfevents.1608284936.b0ea9a627a44
18520 views
�K" ���A
brain.Event:2��>a. ��W�
���A*!
metrics/CrossEntropyLosseU'A{�eQJ ��� vo���A*�
�
gin_configB�B�#### Parameters for Adam:
Adam.b1 = 0.9
Adam.b2 = 0.999
Adam.clip_grad_norm = None
Adam.eps = 1e-05
Adam.weight_decay_rate = 1e-05
#### Parameters for AddLossWeights:
# None.
#### Parameters for backend:
backend.name = 'jax'
#### Parameters for BucketByLength:
BucketByLength.length_axis = 0
BucketByLength.length_keys = None
BucketByLength.strict_pad_on_len = False
#### Parameters for FastGelu:
# None.
#### Parameters for FilterByLength:
FilterByLength.length_axis = 0
FilterByLength.length_keys = None
#### Parameters for LogSoftmax:
LogSoftmax.axis = -1
#### Parameters for random_spans_helper:
# None.
#### Parameters for layers.SelfAttention:
layers.SelfAttention.attention_dropout = 0.0
layers.SelfAttention.bias = False
layers.SelfAttention.chunk_len = None
layers.SelfAttention.masked = False
layers.SelfAttention.n_chunks_after = 0
layers.SelfAttention.n_chunks_before = 0
layers.SelfAttention.n_parallel_heads = None
layers.SelfAttention.predict_drop_len = None
layers.SelfAttention.predict_mem_len = None
layers.SelfAttention.share_qk = False
layers.SelfAttention.use_python_loop = False
layers.SelfAttention.use_reference_code = False
#### Parameters for SentencePieceVocabulary:
# None.
#### Parameters for Serial:
# None.
#### Parameters for Shuffle:
Shuffle.queue_size = 1024
#### Parameters for data.Tokenize:
# None.
#### Parameters for tf_inputs.Tokenize:
tf_inputs.Tokenize.keys = None
tf_inputs.Tokenize.n_reserved_ids = 0
tf_inputs.Tokenize.vocab_type = 'subword'
#### Parameters for Vocabulary:
# None.
#### Parameters for warmup_and_rsqrt_decay:
# None.J
text�F?#, ���E +|���A*
training/learning_rateĚ'7�S$�/ m]P �|���A*"
training/steps per second
O�<YUl+ ��K �}���A*
training/gradients_l2R�(@�:�Q# ��wC �~���A*
training/losseU'A���) 7�_ ���A*
training/weights_l2 �E�Hp. ��W� �[����A
*!
metrics/CrossEntropyLoss��$A� �, ���E ?i����A
*
training/learning_rateu��8t���/ m]P �i����A
*"
training/steps per second�]=���~+ ��K �j����A
*
training/gradients_l2K
,@�Q\�# ��wC �k����A
*
training/loss��$Ao�T�) 7�_ @l����A
*
training/weights_l2#�E�ed�