Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/master/Sequence Models/Week 1/Dinosaur Island -- Character-level language model/utils.py
Views: 13417
import numpy as np12def softmax(x):3e_x = np.exp(x - np.max(x))4return e_x / e_x.sum(axis=0)56def smooth(loss, cur_loss):7return loss * 0.999 + cur_loss * 0.00189def print_sample(sample_ix, ix_to_char):10txt = ''.join(ix_to_char[ix] for ix in sample_ix)11txt = txt[0].upper() + txt[1:] # capitalize first character12print ('%s' % (txt, ), end='')1314def get_initial_loss(vocab_size, seq_length):15return -np.log(1.0/vocab_size)*seq_length1617def softmax(x):18e_x = np.exp(x - np.max(x))19return e_x / e_x.sum(axis=0)2021def initialize_parameters(n_a, n_x, n_y):22"""23Initialize parameters with small random values2425Returns:26parameters -- python dictionary containing:27Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)28Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)29Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)30b -- Bias, numpy array of shape (n_a, 1)31by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)32"""33np.random.seed(1)34Wax = np.random.randn(n_a, n_x)*0.01 # input to hidden35Waa = np.random.randn(n_a, n_a)*0.01 # hidden to hidden36Wya = np.random.randn(n_y, n_a)*0.01 # hidden to output37b = np.zeros((n_a, 1)) # hidden bias38by = np.zeros((n_y, 1)) # output bias3940parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "b": b,"by": by}4142return parameters4344def rnn_step_forward(parameters, a_prev, x):4546Waa, Wax, Wya, by, b = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['b']47a_next = np.tanh(np.dot(Wax, x) + np.dot(Waa, a_prev) + b) # hidden state48p_t = softmax(np.dot(Wya, a_next) + by) # unnormalized log probabilities for next chars # probabilities for next chars4950return a_next, p_t5152def rnn_step_backward(dy, gradients, parameters, x, a, a_prev):5354gradients['dWya'] += np.dot(dy, a.T)55gradients['dby'] += dy56da = np.dot(parameters['Wya'].T, dy) + gradients['da_next'] # backprop into h57daraw = (1 - a * a) * da # backprop through tanh nonlinearity58gradients['db'] += daraw59gradients['dWax'] += np.dot(daraw, x.T)60gradients['dWaa'] += np.dot(daraw, a_prev.T)61gradients['da_next'] = np.dot(parameters['Waa'].T, daraw)62return gradients6364def update_parameters(parameters, gradients, lr):6566parameters['Wax'] += -lr * gradients['dWax']67parameters['Waa'] += -lr * gradients['dWaa']68parameters['Wya'] += -lr * gradients['dWya']69parameters['b'] += -lr * gradients['db']70parameters['by'] += -lr * gradients['dby']71return parameters7273def rnn_forward(X, Y, a0, parameters, vocab_size = 27):7475# Initialize x, a and y_hat as empty dictionaries76x, a, y_hat = {}, {}, {}7778a[-1] = np.copy(a0)7980# initialize your loss to 081loss = 08283for t in range(len(X)):8485# Set x[t] to be the one-hot vector representation of the t'th character in X.86# if X[t] == None, we just have x[t]=0. This is used to set the input for the first timestep to the zero vector.87x[t] = np.zeros((vocab_size,1))88if (X[t] != None):89x[t][X[t]] = 19091# Run one step forward of the RNN92a[t], y_hat[t] = rnn_step_forward(parameters, a[t-1], x[t])9394# Update the loss by substracting the cross-entropy term of this time-step from it.95loss -= np.log(y_hat[t][Y[t],0])9697cache = (y_hat, a, x)9899return loss, cache100101def rnn_backward(X, Y, parameters, cache):102# Initialize gradients as an empty dictionary103gradients = {}104105# Retrieve from cache and parameters106(y_hat, a, x) = cache107Waa, Wax, Wya, by, b = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['b']108109# each one should be initialized to zeros of the same dimension as its corresponding parameter110gradients['dWax'], gradients['dWaa'], gradients['dWya'] = np.zeros_like(Wax), np.zeros_like(Waa), np.zeros_like(Wya)111gradients['db'], gradients['dby'] = np.zeros_like(b), np.zeros_like(by)112gradients['da_next'] = np.zeros_like(a[0])113114### START CODE HERE ###115# Backpropagate through time116for t in reversed(range(len(X))):117dy = np.copy(y_hat[t])118dy[Y[t]] -= 1119gradients = rnn_step_backward(dy, gradients, parameters, x[t], a[t], a[t-1])120### END CODE HERE ###121122return gradients, a123124125126