Nate Schnitzer
LEMMA,

University of Maryland,
College Park, Maryland,
nschnitz@terpmail.umd.edu

Ethan Ewing
LEMMA,

University of Maryland,
College Park, Maryland
eewing1@terpmail.umd.edu

Surjective One Dimensional
Span 6 Cellular Automata

Using FSA and the construction algorithm, we generated a list of surjective span 6 cellu-
lar automata as a modest sample for our FDense program. We wanted to experimentally

quantify Mike Boyle’s conjecture which states that the jointly periodic points of a one di-

Hung Anh Vu
LEMMA,

University of Maryland,
College Park, Maryland,
hvu1@terpmail.umd.edu

1 Introduction

In this paper we are exploring one dimensional cellular
automaton (CA) through our own computer programs to try and
get a better understanding of their periodic orbits. The main focus
is on surjective one dimensional CA highlighted in [1]. Mike
Boyle and Bryant Lee developed a computer program for studying
one-dimensional cellular automata to gather experimental data to
justify conjecture 1.1 [1]. Conjecture 1.1 is a very well-known
open question because there seems to be a correlation between the
behavior of cellular automata and dynamical systems.

Conjecture 1.1 For every surjective one-dimensional cellular
automaton, the jointly periodic points are dense.

Through our research, we wish to replicate the results from [1]
and also provide more evidence for conjecture 1.1 by experiment-
ing on span 6 surjective maps. Additionally, we wish to know if
the fraction of surjective one-dimensional cellular automata given
by range of n codes, which have dense jointly periodic points, goes
to 1 as n goes to infinity.

If we let P represent the number of jointly periodic points in
Per(f)NPr(SN) (i.e. P =|Per(f|Pk(SN))|) and set Vi (f,SN)
= PY/k we can define

V({, Sy) = limy sup Vi (f, Sy)

This raise the question if every cellular automata (f) defined on N
symbols V(f, S,) = VN or if V(f, S,) > 1.

2 Definitions

Cellular automata (CA) are mathematical models that exhibit
complex behavior through the interaction of simple units, known
as cells, which are arranged in a regular grid. Cellular automata
have several key properties that make them interesting and useful
in various areas of science and engineering. Some of these
properties are:

(1) Locality: Each cell in a CA only depends on its local neigh-
borhood of adjacent cells. This locality property makes CAs
computationally efficient and easy to parallelize, as each cell
can be updated independently based on its local state.

Version 1.09, November 9, 2023

mensional cellular automata are dense. Furthermore, we wanted to know if the cardinality
of a cellular automata on N symbols is > YN.

(2) Homogeneity: The same local rule is applied to every cell
in the CA. This property allows the CA to exhibit complex
global behavior that arises from the repeated application of
simple local rules.

(3) Emergence: The global behavior of a CA emerges from the
interaction of many simple local rules. This can lead to the
emergence of complex patterns, structures, and behaviors
that are not immediately obvious from the local rules.

Definition: Let X5 denote the set of doubly infinite sequences
X = ...X_1xgpx1... such that each x; lies in a finite alphabet A of N
symbols. A one-dimensional cellular automata (CA) is a mapping
f:In — Iy which is defined by a local rule F : A2M+1 5 4
where M > 0, such that for all i (f(x)); = F(xi—pzs .- Xizpm) [1]

Definition: Let o (x); denote the shift map on a sequence.
o(x); = x;41. Let Sy denote the shift map on Xy [1]

One single application of the shift map shifts every cell of x €
XN to the right one index. The shift map moves the symbols of a
sequence without changing the content of the sequence itself.

We refer to the points of (not necessarily least) period k of a map
S as Py (S), and the points fixed by S¥ as Per(S), where Per(S) =
Ug P (S). Thus, Per(Sp) is the set of spatially periodic points for
a one-dimensional cellular automaton on N symbols. The jointly
periodic points of a cellular automaton map f on N symbols are
the points in Per(S) that are also periodic under f, i.e., the points
that are temporally periodic as well as spatially periodic.[1]

In simpler terms, an x € X is spatially periodic if x = 0 (x)
i.e. the point is equal to the point shifted n times. An x € X is
temporally periodic if x = f™(x). An x €) is jointly periodic if

o(x) =x = fM(x).

2.1 Density. One of our motivations is to quantify Mike
Boyle’s conjecture which states that the jointly periodic points of
one-dimensional cellular automata are dense. In order to do this,
we must have a firm grasp of what it means to be dense in Z,.
Generally, when we talk about density of sets, a set ¥ C X is
dense in X if every point in X has a point in Y that is arbitrarily
close. For metric spaces, such as X, a distance function, d(x,y)
for x,y in the metric space (X, d), can be used to determine if
points are arbitrarily close. If d(x,y) < € for € > 0, then x y are
arbitrarily close. For X,

d(x,y) = 2227 s |x; — yi

Since X is the set of doubly infinite sequences, to apply d(x, y),
it is necessary to choose a starting index.

1o Lk

%

Example:
2.

Proof: Let x be an arbitrary point in ¥5. x = x1,x,x3,... Let
Y = X[,X2, s Xp—15X15 X2 coes Xp—1, X1, Clearly, y is spatially
periodic. d(x,y) = 27". Let e = 27". Clearly € > 0 and ap-
proaches 0 as n goes to infinity. Since, y is an arbitrary spatially
periodic point and X is arbitrary in X5, and d(x, y) < e, the set of
spatially periodic points are dense in Xp.

A subset E of 2y is considered dense if for every point x in X
and every k € N there exists y in E such that x; = y; whenever |i|
< k. We say E is m-dense if every word of length m on symbols
from the alphabet occurs in a point of E. This definition of density
is more closely linked to conjecture 1.1. This will be more clear
and applicable when we discuss the FDense program.

Prove the set spatially periodic points are dense in

2.2 Surjectivity. Since we are concerned with surjective cel-
lular automata, we should have a working definition of what it
means for a cellular automata is surjective. Foramap F : A —» B
to be surjective, all elements of set B must be attained by applying
F to some a € A.

2.3 Span and Tabular Representation. We can define a
cellular automata as a polynomial function such as f = x_| +
xox1(mod2). This means that the next generation of f is defined
as (fx); = 2x;_1 +xi(x;42)(mod2). The span of this CA is 1 plus
the maximum difference of coordinates with nonzero coefficients
[1]. For our example, it is 1+ 2(1) = 4 so our CA is span 4. To
make our implementation easier, we can represent the block code
(f) in tabular form instead of polynomial form. The tabular form
of our function defines a look up table which allows for us to "look
up" the output of any input. Below is a description of converting
polynomial into tabular [1].

Suppose we want to specify the function f = x[0] + x[1]*x
[2] as a table. First, note that the function is of
span 3. Enumerate the values of the function for
values of x[@0], x[1], and x[2], going through them
in lexicographic order as demonstrated below.
Notice that incrementing starts at x[2] rather than

x[0].

x[0]
x[1]
x[2]

ISIRSISIFSISY
o - oo =
SIS I SN
- —m s w
00 = i
- —wu
- = =0
© = =2 =

Then the tabular rule is "0001 1110".

3 Simple CA Examples

3.1 Elementary CA. Elementary cellular automata exist in
%), the set of doubly infinite sequences X = ..x_jxpx;... Where
each x,, is a 0 or 1. For span 3, each window is 3 bits, thus there
are 23 = 8 different possibilities for each window. Each window
will produce a 0 or 1. We can classify the map f : ¥y — X, with
an 8-bit binary number.

EEN
L

| W N N BN N EhEE hEE
L] L] | | | | L
0 0 0 1 1 1 1 0

This map would correspond to the 8-bit binary number 00 011
110. 00 011 110 is 30 in base 10, so the Wolfram Code[3] for
this mapping is rule 30. The mapping that turns all windows into
black would be 11 111 111, rule 255. Likewise, the mapping that
turns all windows into white 00 000 000, rule 0. Since there are
8-bits and 28 = 256, there are 256 different rules.

> rule_dict =
3 print("Initial Sequence:

3.2 Python Implementation. One dimensional Cellular Au-
tomata are very simple structures to implement in code using a
sliding window approach, where an iterator moves through an ar-
ray, performing some action based on a subset of the array deter-
mined by the current position.

Suppose you are given a CA Rule of width 3 and a 6 element
long sequence, A, to apply the rule to. So, at a given index i, you
would take the window/subset [A[i-1], A[i], A[i+1]] and apply the
rule against that window. You would map this against the entire
sequence, getting the newly evolved CA state.

Using python, we can represent the local function using a dic-
tionary, where k-length tuples can be mapped to some list. We
can generate the dictionary representing a given rule using the
get_rule_dict function that we created:

import itertools

def get_rule_dict(n: int, width: int):
Get the list representing the rule num
Converts n to binary string of length 2%3 and then
pulls it back into
int list
vals = [int(x) for x in
width)]

'{0:0{k}b}'.format(n, k=2xx

Create a dictionary mapping the possible length

width binary sequences to the rule and returns it
return dict((zip(itertools.product([1,0], repeat=
width), vals)))

Now that we have then dictionary containing the rule’s mapping,
we can create a function that applies this to some sequence. As
said before, we want to use a sliding window technique to apply
this mapping to the function on a window of width k.

We created a function apply_function which takes in a list of
integers representing the sequence for the rule to be applied to, a
dictionary containing the mapping of the binary sequences to the
output in the form of tuples and ints, an int representing the width
of the rule.

def apply_mapping(line, rules, width):

new_line = []

for i in range(@, len(line) - (width - 1)):
window = tuple(linel[i:i+width])
new_line.append(rules[window])

return tuple(new_line)

Additionally, we can create another function to generate a ran-
dom binary sequence of length n:

def get_random_seq(n):
seq = []
for _ in range(n):
seq.append(random.randint(0,1))
return seq

Using these three functions, it is trivial to create an interface
that can be used to represent Cellular Automata in Python.

For example, we can use this to run 10 Evolutions of Rule 30
on a random sequence of length 25:

seq = get_random_seq(25)
get_rule_dict(390,3)
{}".format(seq))
for i in range(10):
seq = apply_mapping(seq, rule_dict,
print("Evolution {}: {}".format(i+1,

3)
seq))

4 Finite Automata Representation

Typically, we think of Cellular Automata and the local rules
in terms of a mathematical function or mapping. However, it is
sometimes more useful to view Cellular Automata rules in a more
abstract manner. We can think of the local transition rule of the
cellular automata as a function that takes the current state of a cell
and its neighboring cells and returns the next state of the central
cell. Using this definition, it is easier view our local rules in terms
of finite automata.

Finite Automata (FA) are a computational model which
consists of a finite set of states, input states, final states, and
a transition function which maps an input state to a new state.
The computational model is typically represented as a directed
graph. There are 2 classes of finite automata relevant to our work:
Non-Deterministic Finite Automata (NFA) and Deterministic
Finite Automata (DFA). DFAs are a subset of NFAs. DFAs have a
special restriction where they can only have 1 transition per state
and must end in a final state. Typically, FA are defined by a tuple
(29 0, q0, F, 6)

* Alphabet, typically denoted by X
— For example, a binary alphabet is £ = {0, 1}
 Set of states, typically denoted by Q

« Starting state, typically denoted by g
-q0€Q

* Final States, denoted by F
-FcoQ

* The transition function, denoted by &
-0:0xX—->0

In his paper "Computation Theory of Cellular Automata",
Stephen Wolfram discusses how to go from local mappings for
cellular automata to NFAs and DFAs. He begins by demonstrating
for rule 76 which has the following mappings:

111-0, 110—1, 101—0, 100—0 011—1, 010—1, 001—0,
000—0.

The first NFA here is the most basic build of an NFA for rule
76. Each node is a pair of possible values. Each transition turns
this pair of values into a 3-tuple of values which we can then use
the local mapping to get to the next state and generate part of the
output. For example, lets say we want to know what f(01011) is
where f is the mapping for rule 76. Since the first two values are
01, we begin in node 01. Our next value of our input is 0, so we
take the 010 transition from the 01 node, which outputs a 1 and
takes us to the 10 node. The next value of our input is 1 so we
will take the 101 transition from 10, which outputs O and takes us
to the 10 node. Continuing, we will now take the 011 transition
from 01, which outputs a 1 and brings us to the 11 node. We are
now at the end of our input string. By tracing the NFA, we know
f(01011) = 101.

One thing to notice about this NFA is that the 00 and 01 nodes
only have paths that output a 0 pass through them. Because of
this, we are able to reduce our NFA to have less nodes. Here is
the NFA with the 00 and 01 nodes combined:

To get the DFA of rule 76, we begin from a start node 00,
01, 10, 11. From this node, we can get to 00, 01, 11 by a 0-arc
transition. A O-arc transition, is a transition that outputs a 0. For
example, 00 to 00. From 00, 01, 10, 11, we can get to 10, 11 by a
1-arc transition. We repeat this process for all resulting sets until
we get no new sets. ie. we will now do this for 00, 01, 11 and 10,
11. Below is Wolframs full construction of states and transitions
for the DFA for rule 76. He defines the 00 node as u, the 01
node as u1, the 10 node as uy, and the 11 node as u3.

-] |
W= {ug, Uy, gy Uy} = 00ug, up uzf, {ug, g, g, uz = 1y, us},

{ug,ug, ug}=0{ug,up, ust, {ug,uy,usf—1{uy, us},
(g u)= 1Huy}
Uy =14},

{ug, g} Hug, 3}

{“Zaua}"o{“muh”}}-
{uy}=0{ug,uy},

{ug, uy}-0{ug, uy},

Notice that up—10. This means from the u, state there will be
no 1 transition. Here is the DFA for rule 76.

4.1 The Construction Algorithm. One paper that we in-
spected was "Decision Procedures for Surjectivity and Injectivity
of Parallel Maps for Tessellation Structures" by S. Amoroso and
Y. N. Patt. In this paper the authors build a decision procedure to
determine surjectivity for one-dimension cellular automata. They
call this procedure the Construction Algorithm.

For our purposes, we will begin by selecting an element b € X,
and let the node at level O be the set of all 3-tuples ajajasz such
that the local rule f(ajazaz) =b. For each node N at level i, i
> 0, construct for each a €, a node N, at level i + 1 as follows.
If ajapas is an element in the set corresponding to N, the set
corresponding to N, will consist of exactly those 3-tuples asasd,
d € X, for which f(ayazd) = a. A directed arc labeled a is
then drawn from node N to node N,. If for each ajajzaz in N
there are no such elements d, then this node N, is not included

3 CAL3,

in the graph and we say that node N is terminal in the graph.
We will also say that symbol a made N terminal. If during the
construction process a number of nodes appear at the same or
different levels, all associated with the same subset of Z;, then
each will be a distinct node in the graph but only one, arbitrarily
chosen, will be extended, i.e., only one will have directed arcs
leaving it going to nodes at the next higher level. The equal set
nodes not exended will be called frontier nodes. This construction
process must eventually terminate since there is a bound on the
number of possible subsets of Zg.

What this algorithm does is it traces through several iterations
of the local rule being applied. Noting where there are terminal
nodes is important because this is where we can’t generate a
specific output, thus the cellular automata is non-surjective.
Noting where we have frontier nodes is also important because
this identifies where the cellular automata is cyclic. If we can
cycle back to every node without running into any terminal nodes,
then we can generate all possible outputs, which would confirm
surjectivity.

When implementing this algorithm on rule 116 for example,
we get a terminal node in level 2 of our graph, proving rule 116 is
non-surjective. In the case of this terminal node, its significance
is that it shows that rule 116 cannot generate the sequence 010,
hence 116 is non-surjective. Here is a trace of the algorithm.

ooo
000

C/vg?j frontier
001 T
010
o5 ""'—-._____. 919 srontier
o011 o terminal
010

1 110

T 11

100

10— 3
101
010

frontier

frontier

5 Determining Surjectivity

Although surjectivity can be determined through the Construc-
tion Algorithm, for our purposes we utilized an alternative solution
implemented in Mathematica paclet, KlausSutner/Automata.
The algorithm they implemented to determine surjectivity is
more efficient and can also determine whether a CA is open and
injective. The Automata paclet also provides many other useful
functions and algorithms that were useful for our purposes.

5.1 Getting Started with Automata. Using Automata, it is
extremely easy to represent Cellular Automata:

For Elementary Cellular Automata, you can simply give the rule
number (base 10) to the ECA function:

c = ECA[90]

For general Cellular Automata, you can simply pass the span,
size of the alphabet, and rule number (base 10) to the CA function.
In fact, ECA is simply just a shortcut for span 3, alphabet £, CA.

c = CA[4, 2, 3612]

2, 30] ==

ECA [30]

5.2 ClassifyCA. Automata provides an extremely useful

function called ClassifyCA where if given a cellular automata, it ;

will return an enum indicating the one of 3 possibilities:

4

5

* 0 — No Special Properties
* 1 — Surjective

* 2 — Open

* 3 — Injective

It should be noted that if a CA is injective, it is also open and
surjective and if a CA is open, then it is also surjective.

Before we can analyze how ClassifyCA works, we must first
introduce the concepts of Strongly Connected Graphs, Compo-
nents, and Condensation Graphs [6].

Strongly Connected Graphs are defined as graphs in which
for all verticies, there exists a path which connects them to every
other vertex. It can be determined if a graph is strongly connected
in O(V + E) (Linear) time.

Strongly Connected Components are the partitions of a graph
which are themselves strongly connected. Trivial Strongly Con-
nected Components consist of a single vertex which is not con-
nected to itself with an edge. Otherwise, the strongly connected
component is Non-trivial.

SN EEEEEEEEEEEEEEEEEEEEEEEEEEE

.
. N .
ans? LTI T LA

The Condensation Graph or Condensation of a graph G is
a directed, acyclic graph where each vertex represents a set of
strongly connected components in G. Note the condensation graph
can only be acylic if it contains no strongly connected components
with more than 1 vertex.

ClassifyCA implements a similar algorithm to the Construction
Algorithm in the sense that it turns the Cellular Automata into
a Finite State Automata and performs some analysis on the new
graph. However, instead of searching for frontier/terminal nodes,
ClassifyCA checks the properties of the condensation graph of the
transition system graph of the Finite State Automata representaton
of the Cellular Automata.

Particularly, ClassifyCA checks to see if the number of strongly

connected components where the state is able to get back to itself
is equal to the number of states. If it is, then the cellular automata
is surjective.
Additionally, it should be noted that if the number of non-trivial
strongly connected components is 1, then the cellular automata is
injective. There are other criteria used to determine whether the
Cellular Automata is open, but those are beyond the scope of this
paper and should be abstracted.

Here is the source code for ClassifyCA

ClassifyCA[ca_CA,opts:OptionsPattern[]]:=

> Module[{n,T,G,scc,ntscc,sccind,ed,H,HH,diag,res},

If[!BalancedQCA[cal, Return[@] 1;
n = AlphabetCountCA[cal*(WidthCA[cal-1);
T TransitionSystem@ToSemiautomatonCA[cal;

" assssssEEsEEEsmsssdEEEEEEEEE

N

G = TransitionSystemGraph[ProductTransitionSystem[T,

StateType->"Shallow"]1];

{scc,ntscc,sccind} = StronglyConnectedComponents[G]

{H,scc,ntscc} = Most@CondensationGraph[G,Full->True,
Type->"Shallow"];

diag = First@Select[scc,MemberQ[#,{1,1}]18&];

HH = Subgraph[H,Intersection[
FlattenOne[VertexOutComponent[H,#]& /@ ntscc],
FlattenOne[VertexOutComponent[ReverseGraph@H ,#]& /@
ntscc]

11;

res = Which[
Length[diag] n,
Length[ntsccl==1,
VertexDegree[HH,diag]l==0,
True,

If[OptionValue[Fulll],

res

g

1= 0,
3,
2,
1

1
Sow[{res,H,HH,scc,ntscc}] 1;

5.3 Application. We can utilize the ClassifyCA and the >
Table function to be able to apply and record which CA rules are
surjective. For example, this code finds all of the surjective CA of
width 4 between Rule 0 and Rule 10,000. 6

Cases[Table[{r,
WYY/

ClassifyCA[CA[4,2,r]11},{r, 0, 10000}]1,{x_ o
$y>0$] 10

11
Another interesting application that we can use is given a local 1

tabular rule in polynomial form, we can determine what CA is
associated with this function and then determine if it is surjective. 1‘
For example, this code snippet determines whether the CA associ-
ated with the function f(xq,xq, X2, x3,x4,x5) = (x0 +x3 +xp *x5(17

mod 2) is surjective is: 18
19

c = ConvertToCA[{a_,b_,c_,d_,e_,f_}:->Mod[a+d+c*f,2],6,2, 20
Type->Rule] 2
ClassifyCAlc] >
24

6 FDense 2%

Bryant Lee created three programs that were used to study ,
one-dimensional CA. The first was FDense which is an algorithm 2
used to determine (given a cellular automata f, an integer N > 2, a
positive integer m, and a finite set K of positive integer) whether °
the set Per(f) N Pr(Sy) is m-dense. The limitations on his |
program, with N=2, was m = 13 and k = 27 since the algorithm
demanded a lot of memory space. For this reason, their data
set was restricted entirely to the case of N = 2 symbols. Bryant ’
created his program in 2006 using c++ which can no longer be |
compiled using the current version of g++. Therefore, to recreate s
his program, we created a pseudo-code for FDense. 39

o ESS

pseudo-code: 4
f, #

Define a function FDense that takes as input a c.a.

an integer N, a positive integer m, and a set of +

positive integers K. w
For each value of k in K: =

Compute the set Per(f) /\ Pk(SN) of jointly 10
periodic points of f with period k.

If this set is empty, f is not periodic with period
k. 48
Otherwise, for each word w of length m on the 19
alphabet A: 3¢
Check whether there exists a point x in 5
$Per(f) /\ Pk(SN)$ such that w appears as a 52

substring of x. 53

If no such point x exists, f is not m-dense at k. °
If all words of length m on the alphabet A appear as °°
substrings in some point of $Per(f) /\ Pk(SN)$, f is
m-dense at k. 96

To test our program, we are first going to create the program for 5
span 4 cellular automata. The way we are going to implement the
code is to make it so that every word of length m is periodic under ,
the shift k where k > m. Then, using the tabular rules defined in «

3 #include

Table 1 of [1], we are going to see if the words are also periodic
under the c.a. If the words are periodic under c.a the, by defintion,
they are jointly periodic points. If every word of length m exists
in a sequence in the set Per(f) N Pk(SN) is jointly periodic, then
the c.a. map is m dense.

We first generates all words of length m which gives a total of
2™ In order to make the words periodic for k m, we generate
all words of length (k-m) which gives a total of 2k=m_ Then we
concatenated all words of length (k-m) to every word of length m
which gives us a total of 2% words.

Similar to [1], we will also use the surjective c.a. of span 4
and span 5 from [13]. The first table is from [1, Table 1] which
contains 32 span 4 surjective c.a. The second table from [1, Table
2] contains the 26 span 5 surjective maps. We will compare the
results of our programs to the results of [1, Table 3]. Our source
code below is implemented in C.

#include
#include

<stdio.h>
<stdlib.h>
<math.h>
#include <string.h>
#define N 2

typedef
int
int
} Rule;

struct Rule {
key;
value;

typedef struct StringArray {
char x*strings;
int size;

} StringArray;

Rule rule[16];

void createHashMap(const char *tabularRule, int k) {
int n = (int) pow(2, k);
for (int i = @; 1 < n; i++) {
rule[i].key = 1i;
rule[i].value = tabularRule[i] - '0"';
3
3
void generateWordsHelper (const char *prefix, int length,
StringArray xwords) {
if (strlen(prefix) == length) {
words->strings[words->size] = strdup(prefix);

words->size++;
} else {
for (int i = @; i < N; i++) {
char newPrefix[strlen(prefix) + 21;
strcpy (newPrefix, prefix);

newPrefix[strlen(prefix)] = '0' + i;
newPrefix[strlen(prefix) + 1] = '\0"';
generateWordsHelper (newPrefix, length, words)

}

StringArray generateWords(int length) {
int max_size = (int) pow(N, length);
StringArray words;
words.strings = (char *x) malloc(max_size x sizeof (
char x));
words.size = 0;
generateWordsHelper (
return words;

wn

length, &words);

}

char xapplyRule(const char *word,
int key;
char xnewWord =
sizeof (char));

int span) {

(char *) malloc((strlen(word) + 1) x

newWord[strlen(word)] = '\@';

for (int i = @; i < strlen(word); i++) {
char pattern[span + 1];
pattern[span] = '\0';
for (int j = @; j < span; j++) {

90

118
119
120
121
122
123
124
125

126

128
129

130

pattern[j] = word[(i + j) % strlen(word)];

3
key = (int) strtol(pattern, NULL, 2);
for (int j = @; j < 16; j++) {
if (ruleljl.key == key) {
newWord[i] = '@' + rule[j].value;
break;

}

return newWord;

int main() {
int k
int m
int span

= 20;
= 10;
= 4;

StringArray originalWords =
StringArray wordsWithKperiod =
StringArray allWords;
allWords.strings = (char xx) malloc(originalWords.
size * wordsWithKperiod.size * sizeof(char *));
allWords.size = 0;

generateWords (m);
generateWords(k - m);

for (int i = @; i < originalWords.size; i++) {
for (int j = @; j < wordsWithKperiod.size; j++) {

char xnewWord = (char %) malloc((strlen(

originalWords.strings[i]) + strlen(wordsWithKperiod.

strings[j]) + 1) *sizeof(char));
strcpy(newWord, originalWords.strings[i]);
strcat(newWord, wordsWithKperiod.strings[jl);
allWords.strings[allWords.size] = newWord;
allWords.size++;

}

int true = 0;
for (int i = @; i1 < allWords.size; i++){
char *word = allWords.strings[i];
char *newWord = applyRule(word, span);
while (strcmp(newWord, word) != 0) {
char xtemp = newWord;
newWord = applyRule(newWord,
free(temp);

span);

}
true += 1;
free(newWord);

for (int i = @; i < originalWords.size; i++) {

free(originalWords.strings[i]);
i++) {

for (int i = @; i < wordsWithKperiod.size;

free(wordsWithKperiod.strings[i]);
for (int i = @; i < allWords.size;
free(allWords.strings[il);

i++) {
3

free(originalWords.strings);
free(wordsWithKperiod.strings);
free(allWords.strings);

printf("\n");
return 0;

}

6.1 Code analysis. To analyze the algorithmic complexity of
the code, let’s break it down into the major functions:
generateWordsHelper: This is a recursive function that generates
all possible binary words of a given length. The complexity is
0(2L), where L is the length of the words generated. This is
because each position in the word has 2 possibilities (0 or 1), and
there are L positions.
generateWords: This function is a wrapger for generateWord-
sHelper and has the same complexity, O (2%).
applyRule: This function iterates through each character in a
word and applies a rule based on a span. The complexity is

O(S = W), where S is the size of the span and W is the length of
the word.

main: Generating originalWords and wordsWithKperiod takes
0(2™) and O(2K~™) time complexity, respectively. Creating
allWords by concatenating each pair of words from originalWords
and wordsWithKperiod takes 0(2") time complexity, as there are
2% combined words. Applying the rule and comparing words in a
while loop takes O (2% * § W) time complexity, where S is the
span size and W is the length of the words in allWords.

Overall, the time complexity of the code is O(2% = § = W).
Note that 2K grows exponentially with k, making the algorithm’s
performance degrade rapidly as k increases. The statement
describes a limitation of the algorithm when dealing with large
values of k, as it consumes a significant amount of memory.
The main reason for this memory consumption is the generation
and storage of all possible binary words for a given k. When
we generate allWords in the main function, we are essentially
creating 2k binary strings. Each string is stored in memory, and
as k increases, the number of strings grows exponentially. For
instance: k = 23: There are 223 = 8,388,608 binary strings. k
= 26: There are 226 = 67,108,864 binary strings. As you can
see, the number of binary strings generated grows rapidly with
k, leading to high memory consumption. For large values of k,
storing all the binary strings in memory may not be possible as
k — oo, as it can exhaust the available memory resources. Our
algorithm seem to face the same limitation that Mike Boyle and
Bryant Lee faced. However, we are able to run our program on
CoCalc which provides us with memory exclusive to our local
machine. Even then, the time that it takes to iterate through every
word still takes a very long time when k is larger than 24.

7 Results
| Map [10-dense 13-dense at || Map | 10-dense | 13-dense |
1 11,13,15,17 13,15,17 17 [[]
2 10-20 13-21 18 [] []
3 18 18 19 [[]
4 i [20 0 U
5 l [21 1 {
6 10-21 13-19 22 (1 []
7 10-18 13-18 23 [] []
8 1l 0 24 0 {
9 11,13,15,17,19 | 13,15,17,19 25 [] []
10 [] [26 11-20 13-18
11 i 0 27 0 {
12 1l 1l 28 1 [
13 11,13,15,17 13,15 29 (1 (]
14 1l 1l 30 1 [
15 1l [l 31 1l a
16 10-18 13-18 32 [] []
Table 1 This are the results of our FDENSE program. Using

the 32 span 4 onto maps of [1, Table 1], we used our program
to see if the maps are 10-dense and 13-dense for values of 24
> k > m. [] means that we were not able to get any conclusive
result for that map so far/not tested yet.

20

S

3

13

44

| Map | Tabular Rule | Map | Tabular Rule
1 0000 1111 0010 1101 17 0011 1001 1100 1100 [,
2 0011 1001 1100 1100 18 0011 1010 0011 1100 }s
3 0001 1100 0011 1110 19 0001 1100 0011 1110
4 0001 1110 0101 1010 20 0011 1100 0101 0011 .
5 0010 1001 0110 1101 21 0011 1100 0101 1100 |,
6 0010 1101 0000 1111 22 0011 1100 1010 0011
7 0011 0011 0110 0011 23 0011 1100 1010 1100 *
8 0011 0011 0110 1100 24 0011 1110 0001 1100
9 0011 0011 1001 0011 25 0100 1001 0110 1011
10 0011 0011 1001 1100 26 0100 1011 0000 1111
11 0011 0101 0011 1100 27 0101 1010 0001 1110 |,
12 0011 0101 1100 0011 28 0101 1010 0111 1000 |
13 0011 0110 0011 0011 29 0110 1011 0100 1001 =2
14 0011 0110 1100 1100 30 0110 1101 0010 1001
15 0011 1000 0111 1100 31 0111 1000 0101 1010 |
16 0011 1001 0011 0011 32 0111 1100 0011 1000 fo

Table 2 This is a table of the list of span 4 surjective cellular
automata that were used in [1]. We wanted to see if our program

is correct so we used the same set of inputs and compared our |
output to [1, Table 3]. The maps described in this table is taken

from [7, table I].

8 Conclusion

Mike Boyle proposed that every span 4 surjective cellular au-

tomata is at least 13 dense [1]. While we were replicating his
experiment for the maps described in table 1, our results seem
to match his proposal. We wanted to extend his proposition to
span 6 surjective cellular automata. However, we were not able to
quantify his proposal for majority of the surjective maps that we
found because our FDense program took too long to run and it is
inconclusive for big values of m and k.

9 Acknowledgement

We thank you Professor Rodrigo Trevino and the Lab of Exper- :4
imental Mathematics for giving us the opportunity to work with

graduate student, Chi-Hao. We were able to learn a lot about

computational theory and also had the opportunity to present our 77

work to our peers.

Appendix A: List of Surjective Span 6 CA Rules

11913610175290432170,
12273810184465984170,
10778685752149174890 ,
9838244740979984520,
9833478358074685320,
9765923332887705720,

13527612318716019780,
15987178194065302050,
12297829015969158570,
6149008516228754090,

8608480568017455240,

9761684715563616120,

11067990149230388838,
12273810549538182570,
11936045731524794970,
6531808643310593370,

18446744069414584320,
18446462603027742720,
18374966859414961920,
17361641481138401520,
14757395258967641292,
12297829382473034410,
12297735558912453290,
12273904009452628650,

»
18
49

(

54

55

75
6
78

7

8(
81

82
83
84
85
86

11913616039262988970,
10760694534656141994 ,
12273810549532633770,
12273810550964267690,
12297735922558610090,
12297735923984673450,
11937535914725255850,
11914929955658181290,
11053616526923573930,
11072831592130587306,
11915017572991019690 ,
12273903644380408490,
12297829381046949290,
11915017571643578970,
11053691000511161958,
11937535913383058090,
11072831590989719210,
10766582143467022954,
11936128518366866090,
11936045731440601770,
11915017571564934570,
12297829381125593690,
10851025924903036518,
11936045732872235690,
10851025926048361130,
12297741076598008490 ,
10850959696507349674 ,
12275311039396600490,
10834137168606815914,
11140386616255343210,
11068046444512062122,
11067990148944079530,
11053691000230401450,
10851025924700920410,
12297829381327709798,
11067990150375713450,
11053691001656486570,
11053634925137406634,
10850972941984377514,
12297754322479262378,
10837514919665621674 ,
12278688790858065578 ,
12008468690110147178,
6149102339789291520,
6196766168842283520,
6872316420712079520,
12297923204601937920,
12273717456122085120,
11935962946030203120,
11067933855094066380,
12249885541595589120,
12321755119128433920,
11893906626277563120,
11039335557662271180,
18398892593240473770,
18446556422293465770,
11574355905568809120,
11556131500342665120,
12659530245063331920,
10634005406540393580,
17723342341370677770,
18446593951717689480

References

(1]
[2]

3

[4]

[5]

[6]

[7]

M. Boyle and B. Lee, Jointly periodic points in cellular automata: computer ex-
plorations and conjectures, Experimental Mathematics 16 (2007), no. 3, 293-302
M. Boyle and B. Kitchens, Periodic points for onto cellular automata, Indaga-
tiones Mathematicae 10 (1999), no. 4, 483-493.

“Elementary ~ Cellular ~ Automaton.” From Wolfram
https://mathworld.wolfram.com/ElementaryCellularAutomaton.html.
"Computation Theory of Cellular Automata" by Stephen Wolfram,
https://content.wolfram.com/uploads/sites/34/2020/07/computation-theory-
cellular-automata.pdf

"Decision Procedures for Surjectivity and Injectivity of
allel Mapsfor Tessellation Structures” by S. Amoroso,
Patt,https://www.sciencedirect.com/science/article/pii/S0022000072800138
J. Barnat, P. Bauch, L. Brim and M. Ceska, "Computing Strongly Connected
Components in Parallel on CUDA," 2011 IEEE International Parallel Dis-
tributed Processing Symposium, Anchorage, AK, USA, 2011, pp. 544-555, doi:
10.1109/1PDPS.2011.59

G. A. Hedlund, K. I. Appel and L. R. Welch, All onto functions of span less than
or equal to five, IDA-CRD Working Paper (July, 1963), 73 pages.

MathWorld,

Par-
Y.N.

	1 Introduction
	2 Definitions
	2.1 Density
	2.2 Surjectivity
	2.3 Span and Tabular Representation

	3 Simple CA Examples
	3.1 Elementary CA
	3.2 Python Implementation

	4 Finite Automata Representation
	4.1 The Construction Algorithm

	5 Determining Surjectivity
	5.1 Getting Started with Automata
	5.2 ClassifyCA
	5.3 Application

	6 FDense
	6.1 Code analysis

	7 Results
	8 Conclusion
	9 Acknowledgement
	Appendices
	A List of Surjective Span 6 CA Rules
	References

