Parameterized Families

Ex: fr(x) = rx

O is the only fixed pt

Fr(0) = r

Drastic Change In Behavior

of Crossing r=±1 is a

Bifurcation

Def: Let $f_r(x)$ be a parameterized family of fiths. Then, there is a Bifurcation at r_o if there is an $\varepsilon>0$ 3.t. Whenever $a\varepsilon(r_o-\varepsilon,r_o)$ and $b\varepsilon(r_o,r_o+\varepsilon)$, then the dynamics of the maps f_a ε ε are different.

Ex:
$$f_c(x) = rx(1-x)$$

Fixed pts: $20, \frac{r}{6}$
 $f_c(x) = r - 2rx$
 $f_c(x) = r - 2r(\frac{r}{6})$
 $f_c(\frac{r}{6}) = r - 2r(\frac{r}{6})$

Main Types of Biturcations

- · Saddle Node
- · P.tchfork
- · Transcritical
- · Period Doubling

What we Know of the Logistic Map:

- 1) Max: (1/2, =4)
- 2) Fixed Pts: 20, 5-13
 21, 7-3 are eventually fixed
- 3) When r=3, period doubling bifurcation
- 4) When r=1+16, period doubling

$$N = \bigcap_{n>0} N_n = \text{set of points that never leave}$$

You consider r > 4: $f: \bigwedge \longrightarrow \bigwedge$

Next Week: What does 1 look like?

Next Class:

$$\begin{aligned}
& \bigwedge_{0} = \bigcap_{n} \bigwedge_{n} = \text{ set of points that rever base} \\
& \bigwedge_{0} = \bigcap_{n} \bigcap_{1} \prod_{1} \prod_{1} \prod_{1} \prod_{1} \prod_{2} \prod_{1} \prod_{2} \prod_{1} \prod_{2} \prod_{2} \prod_{2} \prod_{1} \prod_{2} \prod_{$$

Def: A non empty set C=R is a Cantor Set if it is

- (1) C is closed & bounded
- 2 C contains no intervals
 3 Every point in C is an accumulation
 point of C

* Emphasis * Ex: Cantor's Middle Third Set

XEC, x=LRLLLR

Facts: • Cn is a disjoint union of 2" intervals of length 3"

Total length of Cn = (3)"

=> C contains no intervals

. The Complement of C is open, so C must be closed 4 bounded

What's in C?

Each subinterval in Cn has an index in EL,R3^
so points in C=nCn have addresses in EL,R3^
That is every point can be located by an infinite
String of Ls & Rs

if $X = .5, 5_2 5_3 5_4 \dots$, then $X_1 = .5, *$

X2 = . S, 52 *

SIE ELIRS

So, C is a Cantor set

An end point of Cn has an address of form:

Ex:

Ex: 2/9 = .LRL~

So endpoints course pond to strings which are eventually all L's or R's

So the other type of addresses correspond to other points.

Back to Logistic Fitn

Prop: Let r>2+15>4, fr(x)=rx(1-x)

There is a $\lambda > 1$ 5.t. $|f_r(x)| > \lambda > 1$ for all $x \in N$ Also, the length of each $I_{z_1, \dots, I_{z_n}}$ is less than λ^{-n}

Proof: It can be calculated that $|f'_r(x)| \ge |f'_r(\frac{1}{2} + \sqrt{r^2 - 4r})| > 1$ endpoints of gap

if (>2+15

This proves the first part Since f(I) = [0,1]Since Length of [0,1] = 1 and the Stretching (derivative)
on I, is at least 1, then I, has to have length < \f. Otherwise if length of I, > /x, then |= length of [D, 1] = (length of I) \(\lambda > 1) By Same argument, Iz has length = 1/2 Kepeating the Same argument, you get him Thus, length of each Izi,... is less than In

Thm: If r>2+J5, the set N= non Non of points Which never leave under fr(x)=rx(1-x) is a Cantor Set Now we focus on f. restricted to 1. Endpoints of In, i are eventually fixed. Def: A function f: D->D is continuous is topologically transitive if for any open sets U&V which intersect D, there is a XEUND and 120 s.t. f"(x)EV. Prop: If (>2+55, then fr: N-> N' is topologically transitive

 $(\mathcal{L})^{T_{ni}}$ $f^{n}(I_{n,i}) = [0,1]$

Def: $f:D\to D$ exhibits sensitive dependence on initial conditions if there is a 8>0 s.t. for all $x\in D$ and E>0, there is a $x\neq y\in D$ and 120 s.t. |x-y|< E and $|f^n(x)-f^n(y)|> \delta$

Prop: fr: 1/-> 1/ has sensitive dependence on initial conditions if r>2+15

Pf: Let $S = S_1 z_2 cof gap$ $(E = S_1 z_2 cof gap)$ $(E = S_1 z_2$

Since $f''(I_{n,i}) = [0,1]$. Suppose f''(x) is on the left side of the gap. $P_{i}ck \ge f'(x)$ is on the left side of f''(x) = f'(x). Since f''(x) = f'(x) = f'(

Rf (Devancy): f: D->D is chaotic if

- (a) the periodic points are dense in D
- (b) f is topologically transitive (c) f has sensitive dependence on initial dependence

Prop: If f:D->D is topologically transitive, then
either D is infinite or D is a periodic orbit (D is finite)

Proof: Spo D is finite:

D: x

PILK $\mathcal{E} = \underset{x,y \in D}{\text{Min}} \xrightarrow{1 \times y_1} \text{ and so } B_{\varepsilon}(z) \cap \{z\} = \{z\} \text{ for } z \in D$

For any x,y, there is an $n \le t$. f''(x) = y. Also, there is a $m \le t$. f''(y) = x. So, x = y regarding. By transitivity, there is one periodic orbit

Thm: Let f:D->D be continuous where DCR is infinite and has a dense set of periodic points and is topologically transitive.

Then, f has sensitive dependence on initial conditions. So f is chaotic.