Symbolic Dynamics

Def: The set of all infinite sequences or strings of zeroes 4 ones (Book) is called the symbol space of 0.14 is denoted by $\Sigma_2 = \Sigma_2 = \Sigma_0 , i\xi^N$

(Fractice) $\Sigma_{2}^{+} = \{0,13^{N}, \Sigma_{2} = \{0,13^{N}, \Sigma_{3} = \{0,13^{N}, \Sigma_{4} = \{0,13^{$

Defn: For $X, y \in \Sigma_2^+$, let $d(x,y) = \sum_{i>0}^{District} \frac{|x-y|}{2^i}$ (Book)

(Alternative): $d(\bar{x}, \bar{y}) = 2^{-K(\bar{x}, \bar{y})}$, $K(\bar{x}, \bar{y}) = \text{Smallest id} \times \text{ where } X_i \neq y_i$

Def: Let x be a set. If there is a fctn d:XxX->R 1) d(x,y) ≥ 0; d(x,y)=0 iff x=y Positive Distances 2) d(x,y) = d(y,x) Symmetry 3) $d(x,y)+d(y,z) \ge d(x,z)$ Triangle Inequality Then, d is a metric on X and X is a metric space

Def: Let d'be a metric on set X.

- a) U=X is an open set if for any XEU, there is an E>O S.t. if d(x,y) LE, then yEU
- b) For $x \in X$ and E>0, the set $N_{\epsilon}(x) = \{y \in X : d(x,y) < E\}$ is the E-neighborhood. $B_{\epsilon}(x) = E$ -ball around x
- C) A sequence of pts $X_1, X_2, X_3, ...$ converges to X^* if for any E, there is an idx N s.t. $d(X^*, X_i) L \Xi$ if i > N

- d) x is an accumulation/limit pt of X if for any $\varepsilon > 0$, there is a $x \neq y \in X$ s.t. $y \in N_{\varepsilon}(x)$
- e) A set V is closed if it contains all of its limit pts.
- f) A set ACX is dense in X if for any XEXIA and E>O, there is a yEA st. yENe(x)
- g) If d' is a metric on V, then $f: X \rightarrow Y$ is continuous if for any converging sequence $X_1, X_2 \rightarrow X^*$, the sequence $f(X), f(X_2), \dots \rightarrow f(X^*)$ in Y

Properties:

- 1) A set U is open if for any XEU, there is
 a 2>0 s.t. Be(x) CU
- 2) $B_{\epsilon}(x) = N_{\epsilon}(x)$ is open
- 3) The following are equivalent:

- a) X is an accumulation pt b) I a sequence X1, X2 Converging to X W/ Xi = X for all i.
- 4) The Compliment of an open set is closed.
 The compliment of a closed set is open
- 5) A feth f: X->Y is continuous iff f'(U) is open wherever UCY is open

Recall: $\overline{\mathcal{A}}(\bar{x},\bar{y}) = \overline{\mathcal{A}}^{-\kappa(\bar{x},\bar{y})}$

Given $\overline{X} = (X_1, X_2, ...) \in \Sigma_2^+$ what is $N_{\frac{1}{2}}(\overline{X})$

Ny(x)= {ye5; y=x,3= {x, *,*, *,*}

 $N_2 r(\bar{\chi}) = 2\bar{y} \in X : j = X : for izn3$

What are the accumulation pts of Nzn(x)? Claim: Non(x) consists of all accumulation pts of Pros: Pick WENzn(X): ω = (X,, X2,..., Xn, Wn11, Wn12,...) $\bar{\omega}_{i} = (\chi_{i}, \chi_{2}, \ldots, \chi_{n}, \omega_{i}, \ldots, \omega_{K}, \omega_{K+i}, \ldots)$ Doing this Wik->W SO W is a limit of VK=(X,,...,Xn, Vary tail) Cannot Simit to Non(x)

Conclusion: $N_{2}(\bar{x}) \subset \Sigma_{2}^{\dagger}$ are both closed 4 open, clopen?

Consider To= \(\times \times \) \(\times \ Claim: To C Z 2 15 dense Pf. Pick y E Si. Let yn=(y,y2,...yn,0)
so yn E To and yn > y

Ultrametric/Non-Archimedean Spaces:

Def: The shift map $\sigma: \Sigma_z^+ \to \Sigma_z^+$ is the function defined by shifting to the left/truncating the first coordinate.

$$\overline{X} \in \Sigma_{+}^{2}, \overline{X} = X_{1} \times X_{2} \times X_{3} \dots$$

$$\sigma(\overline{X})_{i} = X_{i} \times X_{$$

There is also a Shift map
$$\sigma: \Sigma_z > \Sigma_z$$
 which shifts to the left. $\sigma(... \times ... \times ...) = ... \times ... \times ... \times ...$

Proposition: The shift map is continuous

Pf: Pick
$$\overline{X} \in \Sigma_{z}^{+}$$
, $\overline{X} = X_{1}X_{2}...$

Pick $\overline{X} \neq \overline{y}_{K} = X_{1}X_{2}...X_{K}\overline{O}$
 $O(\overline{y}_{K}) = X_{2}X_{3}...X_{K}\overline{O}$
 $O(\overline{x}) = X_{2}X_{3}...X_{K}\overline{O}$
 $O(\overline{x}) = X_{2}X_{3}...X_{K}X_{K}$

if $\overline{y}_{K} \xrightarrow{K} \overline{X}$ then $O(\overline{y}_{K}) \xrightarrow{K} O(\overline{X})$

Proposition: The shift map has the following properties:

- (1) The set of periodic pts is dense in Σ_z^{\dagger}
- (2) The set of periodic pts of period n is 2" elements
- (3) The set of eventually periodic pts which are not periodic is dense in Σ_{1}^{t}
- (4) There is an element w/ a dense orbit.
- (5) The set of pts which are reither periodic or eventually periodic is dense in Zz

- 1) Pick arbitrary $X \in \mathbb{Z}_{z}^{+}$ and $E = 2^{-n}$. Let $y = X_1 X_2 ... X_n X_{n+1} X_1 X_2$. Then y is periodic 4 $d(\bar{x}, \bar{y}) \leq E$
- 2) Let Ln be the set of strings of length n.

 Then, |Ln| = 2°. Each we Ln gives the periodic orbit

 Xw = WE Zz of period n.
- 3) $P_{1}CK$ $X \in \Sigma_{2}^{+}$ and $E = 2^{-n}$. Let $Y = X_{1}X_{2}...X_{n+1}$ \overline{D} . Then \overline{Y} is eventually periodic $A = A(\overline{X}, \overline{Y}) \leq E$ (assuming $X_{1}X_{2}...X_{n+1} \neq \overline{D}$)
- 4) Let X=01,00011011,000001010011,
 all strings of light all strings of high 3

If you want \bar{X} to visit an open set determined by a string of length K. Then, after roughly 2^{K+1} iterates, $O^{\bar{L}}(\bar{X})$ will visit that open set. Since all open sets are constructed from determining the first J symbols,

- $J^{i}(\bar{x})$ will eventually enter the open set.
- 5) The orbit from 4 is a subset of this set & it's already dense
- Def: Let $f:D\to D$ where D is a subset of a metric space. f is topologically transitive if for any open U,V $\omega/$ non-empty intersection ω/D , there is a N>0 such that $f''(UND)N(VND)=\emptyset$ or there is $Z\in UND$ s.t. $f''(Z)\in V$
- Proposition: Let f: D->D be a fith on a subset of a metric space.

 If the periodic pts are dense & there is a pt w/ a dense orbit, then f is topologically transitive.
- Def: Let $f: D \rightarrow D$ be defined on a subset of a metric space. Then, f has sensitive dependence on initial conditions if there is a 8 > 05.1. for any $X \in D$ & E > 0, $y \in N_E(x)$ there is a n > 0 s.1. $d(f^n(x), f^n(y)) > 8$

Def: A fctn f: D->D is Chaotic if:

- 1) The periodic points are dense
 - 2) f is topologically transitive
 - 3) f has sensitive dependence on initial conditions

Thm: Let D be an infinite subset of a metric space and $f:D\to D$ is continuous. Then, (1) 4 (2) => (3)

Prop: 0: 5= > 5= is topologically transitive

Pf Let U,V be determined by strings Wn, Wr: U= \(\tilde{X}\in \Sigma_2^\tau: \tilde{X}=\omega_n ***...\) \(V=\(\tilde{X}\in \Sigma_2^\tau: \omega_n ***...\)

Pick $\bar{\chi} = W_n W_v ** \dots \in U$ Then, $O(\bar{\chi}) = W_v *** \dots \in V$

Corollary: The shift map is Chaotic

Back to Logistical Map

$$h_{r}(x) = rx(1-x)$$

$$r > 2+\sqrt{5}$$

$$T_{0}$$

Defined 1 to be the set of pts in [0,1] which never leave [0,1].

We want to find T: N-> Z' s.t. Iohr = OOI.

Given $X \in \mathcal{N}$, we want to describe its itnerary/address in that $T_r(X)_i = \{0, if h_r^{i+}(x) \in I_s \}$

We do this & it satisfies Trohr = Ootr

Need to Check if Trisa homeomorphism

- 1) Bijective
- 2) Continuity
- 3) Inverse Continuity

$$\Sigma_n^+ = 20.1..., n-13^N = n-shift$$

$$O: \Sigma_n^+ \rightarrow \Sigma_n^+ \quad \text{shift map, continuous}$$

Def: XC Zn is a subshift if

i)
$$\sigma(x) = x$$

2) X is closed

Ex:
$$X \subset \mathbb{Z}_{2}^{+}$$
 = sequences ω / no repeated 1s.
Ly subshift of \mathbb{Z}_{2}^{+} \longrightarrow \mathbb{B} = \mathbb{Z}_{1}^{-}

It is a subshift of finite type (SFT) if there is a finite list B of forbidden strings which do not appear in elements of X

Graph Representations

Any finite directed graph $\Gamma^{-}(V,E)$ defines a Vertex shift which is a SFT in $\Sigma^{+}_{\mu\nu}$ by $\Sigma^{\nu}_{\mu} = \Sigma^{+}_{\mu\nu}$: there is an infinite path in Γ visiting V_{i} $\Sigma^{\nu}_{\mu\nu}$

$$C = \sum_{r=2}^{v} \sum_{z=2}^{+}$$

Any finite directed graph of defines an edge shift, an SFT, in \sum_{μ}^{t} by: $\sum_{\mu}^{t} = \{ \bar{x} \in \Sigma_{\mu}^{t} : \text{ there is on infinite path } \}$

Fact: Every SFT has a graph representation as an edge shift or a vertex shift.

The graph depends on list B of forbidden words.

If X is given by a vertex shift, there is an associated adjacency matrix. (Ar) = { 1 if there is edge blun i, j

If X is given by an edge shift, then there is an associated adjacency matrix: (Ae); = # of edges blum Vi, V;

$$(A_{\Gamma}^{e}) = (2) \rightarrow eigenvalue: 2$$

Def: A non-negative square matrix is primitive if there is an n>0 s.t. An is positive.

Thm (Peron-Frobenius) Let A be primitive.

- 1) A has a positive eigenvalue, la
- 2) Apr is a simple root of Charpoly of A
- 3) has a positive eigenvector Vps
- 4) Apr is the largest eigenvalue in norm
- 5) Any non-neg eigenvalue is a multiple of Vzf

Stretches w/m cone and eventually approaches the 1 dimensional line.

Back to Shift of Finite Type:

Question: How many pts of period n obes $\sigma: X \to X^2$.

Take (A_{Γ}^n) and add all diagonals => trace (A_{Γ}^n)

This is the size of Strings of length n that

Def: The spectral radius, P, of A is the Modulus/norm of the largest eigenvalue

Ex: If A is primitive: PA = APF

Def: The topological entropy of $\sigma: X \to X$ is: $h(\sigma) = \lim_{n \to \infty} \frac{\log |W_n|}{n} = \sup_{n \to \infty} \frac{\log |W_n|}{n} = \exp(n - 1) \exp(n - 1)$

For 2-shift: $h(\sigma) = \lim_{n \to \infty} \frac{\ln 2^n}{n} = \ln 2$

Thm: If $\sigma: X \to X$ is a SFT w/ primitive matrix A, then $h(\sigma) = \ln(\rho_A) = \ln(\lambda_{pf})$

Proof: $|W_n| = \text{trace}(A^n) = \text{sum of eigenvalues of } A^n$ = $\lambda_{pf}^2 + \dots$

Since App is largest by norm, there is constant C>1 such that:

 $\frac{1}{C} \lambda_{pf}^{n} \leq |W_{n}| \leq C \lambda_{pf}^{n}$

So, lim log (Elim log Wal & lim C) pf

log lpf

log lpf

log lpf

$$h(\sigma) = \ln(\frac{1+\sqrt{5}}{2})$$

of periodic points of period n is

≈ lips ≈ Fn (nth Fibonacci #)

h(0) measures the max uncertainty in exponential form that you have in extending a word in the subshift to a larger word.

it's not exponential.

('Not Actual Des of Topological Entropy. But for SFTs, they are equivalent

$$X \xrightarrow{\sigma} X$$
 is a topological Conjugacy, then $h(f) = h(\sigma)$

Corollary: For <>2+15, the logistic map hr: 1/->1/ has
to pological entropy ln(2)

