\begin{align*} s_0 + s_1 + s_2 + s_3 &= 1\\ 0 \leq s_0 &\leq 1\\ 0 \leq s_1 &\leq 1\\ 0 \leq s_2 &\leq 1\\ 0 \leq s_3 &\leq 1\\ \ \\ 2\cdot s_0 + 2 \cdot s_1 + 2\cdot s_2 + 2 \cdot s_3 &\leq c\\ s_2 + s_3 + 1 &\geq s_0\\ s_1 + s_2 + 1 &\geq s_0\\ s_1 + s_2 + 1 &\geq s_3\\ s_0 + s_1 + 1 &\geq s_3\\ \end{align*}
asymptotisch: \begin{align*} s_0 + s_1 + s_2 + s_3 & = 1\\ 0 \leq s_0 & \leq 1\\ 0 \leq s_1 & \leq 1\\ 0 \leq s_2 & \leq 1\\ 0 \leq s_3 & \leq 1\\ \ \\ 2\cdot s_0 + 2 \cdot s_1 + 2\cdot s_2 + 2 \cdot s_3 \leq & c\\ s_0 \leq & s_2 + s_3 \\ s_0 \leq & s_1 + s_2 \\ s_3 \leq & s_1 + s_2 \\ s_3 \leq & s_0 + s_1 \\ \end{align*}
from sage.symbolic.relation import solve_ineq
forget()
var('s0,s1,s2,s3,c')
assume(0 <= s0)
assume(s0 <= 1)
assume(0 <= s1)
assume(s1 <= 1)
assume(0 <= s2)
assume(s2 <= 1)
assume(0 <= s3)
assume(s3 <= 1)
setze $s_0 = 1 - s_1 - s_2 - s_3$
s0 = 1 - s1 - s2 - s3
forme Ungleichungen, die $s_0$ enthalten, um
2*s0 + 2*s1 + 2*s2 + 2*s3 <= c
solve_ineq([s0 <= s2 + s3],[s3,s2,s1])
solve_ineq([s0 <= s1 + s2],[s3,s2,s1])
solve_ineq([s3 <= s0 + s1],[s3,s2,s1])
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq 1 - s_1 - s_2 - s_3 \leq & 1\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1\\ 0 \leq s_3 \leq & 1\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \quad &\\ 1 - 2s_1 - 2 s_2 \leq s_3 \quad &\\ s_3 \leq & s_1 + s_2\\ s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
Forme 3. Zeile um:
solve_ineq([0 <= 1 - s1 - s2 - s3],[s3,s2,s1])
bool(1 - s1 - s2 - s3 <= 1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1\\ 0 \leq s_3 \leq & 1\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \quad &\\ 1 - 2s_1 - 2 s_2 \leq s_3 \quad &\\ s_3 \leq & s_1 + s_2\\ s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
prüfe Grenzen für $s_3$
bool(0 <= s1 + s2)
bool(0 <= 1/2 - s2/2)
solve_ineq([0 <= 1 - s1 - s2],[s2,s1])
solve_ineq([1/2 - s1/2 - s2 <= s1 + s2],[s2,s1])
bool(1/2 - s1/2 - s2 <= 1/2 - s2/2)
bool(1/2 - s1/2 - s2 <= 1 - s1 - s2)
solve_ineq([1 - 2*s1 - 2*s2 <= s1 + s2],[s2,s1])
solve_ineq([1 - 2*s1 - 2*s2 <= 1/2 - s2/2],[s2,s1])
bool(1 - 2*s1 - 2*s2 <= 1 - s1 - s2)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{4}{3}s_1 \leq s_2 \quad &&\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \quad &\\ 1 - 2s_1 - 2 s_2 \leq s_3 \quad &\\ s_3 \leq & s_1 + s_2\\ s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
prüfe Grenzen für $s_2$:
bool(0 <= 1 - s1)
bool(1/4 - 3*s1/4 <= 1 - s1)
bool(1/3 - s1 <= 1 - s1)
bool(1/3 - 4*s1/3 <= 1 - s1)
bool(1/3 - s1 >= 1/3 - 4/3*s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \quad &\\ 1 - 2s_1 - 2 s_2 \leq s_3 \quad &\\ s_3 \leq & s_1 + s_2\\ s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
solve_ineq([1 - s1 - s2 <= s1 + s2],[s2,s1])
solve_ineq([1 - s1 - s2 <= 1/2 - s2/2],[s2,s1])
solve_ineq([s1 + s2 <= 1/2 - s2/2],[s2,s1])
$\qquad \mathbf{\leq} \qquad \quad$ | $\mathbf{1-s_1-s_2}$ | $\mathbf{s_1 + s_2}$ | $\mathbf{\frac{1}{2} - \frac{1}{2} s_2 \quad}$ |
---|---|---|---|
$\mathbf{1 - s_1 - s_2}$ | immer $\qquad \qquad$ | ${\frac{1}{2}-s_1\leq s_2}$ | ${1 - 2s_1 \leq s_2}$ |
$\mathbf{s_1 + s_2}$ | ${s_2 \leq \frac{1}{2} - s_1}$ | immer $\qquad \qquad$ | ${s_2 \leq \frac{1}{3}-\frac{2}{3}s_1}$ |
$\mathbf{\frac{1}{2}-\frac{1}{2}s_2}$ | ${s_2 \leq 1 - 2s_1 }$ | ${\frac{1}{3}-\frac{2}{3}s_1 \leq s_2}$ | immer $\qquad \qquad$ |
solve_ineq([1/2 - s1 >= 1 - 2*s1],[s2,s1])
solve_ineq([1/2 - s1 <= 1/3 - 2*s1/3],[s2,s1])
solve_ineq(1/3-2*s1/3<=1-2*s1)
obere Grenze:
obere Grenze $\quad$ | im Fall $\qquad \qquad \qquad \qquad \quad$ |
---|---|
$\mathbf{1-s_1-s_2}$ | ${1-2s_1 \leq s_2}$ und $s_1 \leq \frac{1}{2}$ |
$\mathbf{1-s_1-s_2}$ | ${\frac{1}{2}-s_1 \leq s_2}$ und $\frac{1}{2} \leq s_1$ |
$\mathbf{s_1 + s_2}$ | ${s_2 \leq \frac{1}{3} - \frac{2}{3}s_1}$ und ${s_1 \leq \frac{1}{2}}$ |
$\mathbf{s_1 + s_2}$ | ${s_2 \leq \frac{1}{2} - s_1}$ und ${\frac{1}{2} \leq s_1}$ |
$\mathbf{\frac{1}{2} - \frac{1}{2}s_2}$ | ${\frac{1}{3}-\frac{2}{3}s_1 \leq s_2 \leq 1 - 2s_1}$ und $s_1 \leq \frac{1}{2}$ |
Fall 4 ergibt eine Nullmenge, da $0 \leq s_2$ und damit:
solve_ineq(0 <= 1/2 - s1)
neue obere Grenzen:
obere Grenze $\quad$ | im Fall $\qquad \qquad \qquad \qquad \quad$ |
---|---|
$\mathbf{1-s_1-s_2}$ | ${1-2s_1 \leq s_2}$ und $s_1 \leq \frac{1}{2}$ |
$\mathbf{1-s_1-s_2}$ | ${\frac{1}{2}-s_1 \leq s_2}$ und $\frac{1}{2} \leq s_1$ |
$\mathbf{s_1 + s_2}$ | ${s_2 \leq \frac{1}{3} - \frac{2}{3}s_1}$ und ${s_1 \leq \frac{1}{2}}$ |
$\mathbf{\frac{1}{2} - \frac{1}{2}s_2}$ | ${\frac{1}{3}-\frac{2}{3}s_1 \leq s_2 \leq 1 - 2s_1}$ und $s_1 \leq \frac{1}{2}$ |
solve_ineq([0 >= 1/2 - s1/2 - s2],[s2,s1])
solve_ineq([0 >= 1 - 2*s1 - 2*s2],[s2,s1])
solve_ineq([1/2 - s1/2 - s2 >= 1 - 2*s1 - 2*s2],[s2,s1])
$\qquad \mathbf{\geq} \qquad \qquad$ | $\mathbf{0}$ | $\mathbf{\frac{1}{2} - \frac{1}{2}s_1 - s_2}$ | $\mathbf{1 - 2s_1 - 2s_2}$ |
---|---|---|---|
$\mathbf{0}$ | immer $\qquad \qquad$ | ${\frac{1}{2}-\frac{1}{2}s_1 \leq s_2}$ | ${\frac{1}{2}-s_1\leq s_2}$ |
$\mathbf{\frac{1}{2} - \frac{1}{2}s_1 - s_2}$ | ${s_2 \leq \frac{1}{2}-\frac{1}{2}s_1}$ | immer $\qquad \qquad$ | ${\frac{1}{2}-\frac{3}{2}s_1 \leq s_2}$ |
$\mathbf{1 - 2s_1 - 2s_2}$ | ${s_2 \leq \frac{1}{2} - s_1}$ | ${s_2 \leq \frac{1}{2}-\frac{3}{2}s_1}$ | immer $\qquad \qquad$ |
bool(1/2 - s1/2 >= 1/2 - s1)
bool(1/2 - 3*s1/2 <= 1/2 - s1/2)
bool(1/2 - 3/2*s1 <= 1/2 -s1)
untere Grenze:
untere Grenze $\quad$ | im Fall $\qquad \qquad \qquad \qquad \quad$ |
---|---|
$\mathbf{0}$ | ${\frac{1}{2}-\frac{1}{2}s_1 \leq s_2}$ |
$\mathbf{\frac{1}{2} - \frac{1}{2}s_1 - s_2}$ | ${\frac{1}{2}-\frac{3}{2}s_1 \leq s_2 \leq \frac{1}{2}-\frac{1}{2}s_1}$ |
$\mathbf{1 - 2s_1 - 2s_2}$ | ${s_2 \leq \frac{1}{2}-\frac{3}{2}s_1}$ |
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ 1-2\cdot s_1 \leq s_2 \quad & \textrm{(neu)}\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \textrm{(neu)} \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
prüfe Grenzen für $s_2$
bool(1-2*s1 <= 1 - s1)
bool(1/2 - s1/2 <= 1 - s1)
bool(0 <= 1/2 - 1/2*s1)
bool(1/4 - 3*s1/4 <= 1/2 - 1/2*s1)
bool(1/3 - s1 <= 1/2 - 1/2*s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \\ 1-2\cdot s_1 \leq s_2 \leq & 1 - s_1\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
solve_ineq(1-2*s1 >= 1/2 - s1/2)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{3}\\ 1 - 2 \cdot s_1 \leq s_2 \leq & 1 - s_1\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ \frac{1}{2} - \frac{1}{2} \cdot s_1 \leq s_2 \leq & 1 - s_1\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1 \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{2} - s_1 \leq s_2 \quad & \textrm{(neu)} \\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \textrm{(neu)} \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
bool(1/2 - s1 <= 1 - s1)
bool(1/2 - s1/2 <= 1 - s1)
untere Grenze für $s_2$
bool(0 <= 1/2 - s1/2)
bool(1/2 - s1 <= 1/2 - s1/2)
bool(1/4 - 3*s1/4 <= 1/2 - s1/2)
bool(1/3 - s1 <= 1/2 - s1/2)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1 \\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \leq & 1 - s_1\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad \textrm{(neu)}\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \textrm{(neu)} \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
Dieser Fall ist eine Nullmenge, da für die Grenzen von $s_2$ gilt:
solve_ineq(1/2 - 1/2*s1 <= 1/3 - 2/3*s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & 1 - 2 s_1 \quad \textrm(neu)\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \textrm(neu) \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2 \\ \end{align*}
Prüfe Grenzen für $s_2$:
bool(1-2*s1 <= 1 - s1)
solve_ineq(0 <= 1 - 2*s1)
solve_ineq(1/3-2/3*s1 <= 1 - 2*s1)
solve_ineq(1/2 - s1/2 <= 1 - 2*s1)
solve_ineq(1/4 - 3/4*s1 <= 1 - 2*s1)
bool(1/3 <= 3/5)
solve_ineq(1/3 - s1 <= 1 - 2*s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{3}\\ 0 \leq s_2 \leq & 1 - 2 s_1\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \quad &\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2 \\ \end{align*}
Finde untere Grenze für $s_2$:
bool(0 <= 1/2 - s1/2)
bool(1/3 - 2*s1/3 <= 1/2 - s1/2)
bool(1/4 - 3*s1/4 <= 1/2 - s1/2)
bool(1/3 - s1 <= 1/2 - s1/2)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \leq & 1 - 2 s_1\\ 0 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2 \\ \end{align*}
untere Grenze: $\frac{1}{2} - \frac{1}{2}s_1 - s_2$
obere Grenze: $1 - s_1 - s_2 $ und $s_1 \leq \frac{1}{2}$
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \quad \textrm{(neu)} \\ 1 - 2 s_1 \leq s_2 \quad & \textrm{(neu)}\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
prüfe Grenzen für $s_2$
bool(0 <= 1/2 - s1/2)
bool(1/4 - 3/4*s1 <= 1/2 - s1/2)
bool(1/3 - s1 <= 1/2 - s1/2)
bool(1/2 - 3/2*s1 <= 1 - s1)
bool(1/2 - 3/2*s1 <= 1/2 - 1/2*s1)
bool(1 - 2*s1 <= 1 - s1)
solve_ineq(1 - 2*s1 <= 1/2 - 1/2*s1)
bool(1/2 - s1/2 <= 1 - s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ 0 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \quad & \\ 1 - 2 s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
finde untere Grenze für $s_2$
solve_ineq(0 <= 1 - 2*s1) #true
solve_ineq(1/4 - 3/4*s1 <= 1 - 2*s1) #true
bool(3/5 >= 1/2)
solve_ineq(1/3 - s1 <= 1 - 2*s1) #true
bool(1/2 - 3/2*s1 <= 1 - 2*s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ 1 - 2s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
untere Grenze: $\frac{1}{2} - \frac{1}{2}s_1 - s_2$
obere Grenze: $1 - s_1 - s_2 $ und $\frac{1}{2} \leq s_1$
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1 \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - s_1 \leq s_2 \quad & \textrm{(neu)}\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \quad \textrm{(neu)} \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
bool(1/2 - s1/2 <= 1 - s1)
prüfe Grenzen für $s_2$
bool(0 <= 1/2 - 1/2*s1)
bool(1/4 - 3/4*s1 <= 1/2 - 1/2*s1)
bool(1/3 - s1 <= 1/2 - s1/2)
bool(1/2 - s1 <= 1/2 - s1/2)
bool(1/2 - 3/2*s1 <= 1/2 - 1/2*s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
Finde untere Grenze für $s_2$
solve_ineq(1/4 - 3/4 *s1 <= 0) #true
solve_ineq(1/3 - s1 <= 0) #true
solve_ineq(1/2 - s1 <= 0) #true
solve_ineq(1/2 - 3/2*s1 <= 0) #true
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \quad \textrm{(neu)} \\ s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad \textrm{(neu)}\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
Bestimme obere Grenze für $s_2$:
bool(1/3 - 2/3*s1 <= 1/2 - 1/2*s1)
bool(1/3 - 2/3*s1 <= 1 - s1)
Prüfe Grenzen für $s_2$:
solve_ineq(0 <= 1/3 - 2/3*s1) #true
bool(1/4 - 3/4*s1 <= 1/3 - 2/3*s1)
bool(1/3 - s1 <= 1/3 - 2/3 *s1)
solve_ineq(1/2 - 3/2*s1 <= 1/3 - 2/3 *s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{5} \leq s_1 \leq & \frac{1}{2}\\ 0 \leq s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
Bestimme untere Grenze für $s_2$:
solve_ineq(0 >= 1/4 - 3/4*s1)
solve_ineq(0 >= 1/3 - s1)
solve_ineq(0 >= 1/2 - 3/2*s1)
solve_ineq(1/2 - 3/2*s1 >= 0)
solve_ineq(1/2 - 3/2*s1 >= 1/4 - 3/4*s1)
solve_ineq(1/2 - 3/2*s1 >= 1/3 - s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ 0 \leq s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{5} \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
untere Grenze: $\frac{1}{2} - \frac{1}{2}s_1 - s_2$
obere Grenze: $\frac{1}{2} - \frac{1}{2}s_2$
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & 1 - 2 s_1 \quad \textrm{(neu)}\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \quad \textrm{(neu)} \\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
Prüfe Grenzen für $s_2$:
solve_ineq(1/2 - 1/2*s1 <= 1 - 2*s1)
bool(0 <= 1/2 - 1/2*s1)
solve_ineq(0 <= 1 - 2*s1) #true
solve_ineq(1/4 - 3/4*s1 <= 1 - 2*s1) #true (1/2 <= 3/5)
bool(1/4 - 3/4*s1 <= 1/2 - 1/2*s1)
solve_ineq(1/3 - s1 <= 1- 2*s1) #true (1/2 <= 2/3)
bool(1/3 - s1 <= 1/2 - 1/2*s1)
solve_ineq(1/3 - 2/3*s1 <= 1 - 2*s1) #true
bool(1/3 - 2/3*s1 <= 1/2 - 1/2*s1)
bool(1/2 - 3/2*s1 <= 1 - 2*s1)
bool(1/2 - 3/2*s1 <= 1/2 - 1/2*s1)
Fall 1 (obere Grenze $1 - 2s_1$): \begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ 0 \leq s_2 \leq & 1 - 2 s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
Bestimme untere Grenze für $s_2$:
solve_ineq(0 <= 1/3 - 2/3*s1) #true
bool(1/4 - 3/4*s1 <= 1/3 - 2/3*s1)
bool(1/3 - s1 <= 1/3 - 2/3*s1)
solve_ineq(1/2 - 3/2*s1 <= 1/3 - 2/3*s1) #true
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & 1 - 2 s_1\\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
Fall 2 (obere Grenze $\frac{1}{2} - \frac{1}{2} s_1$): \begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{3}\\ 0 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
Bestimme untere Grenze für $s_2$:
solve_ineq(0 <= 1/3 - 2/3*s1) #true
bool(1/4 - 3/4*s1 <= 1/3 - 2/3*s1)
bool(1/3 - s1 <= 1/3 - 2/3*s1)
solve_ineq(0 <= 1/2 - 3/2*s1) #true
solve_ineq(1/4 - 3/4*s1 <= 1/2 - 3/2*s1) #true
solve_ineq(1/3 - s1 <= 1/2 - 3/2*s1) #true
solve_ineq(1/3 - 2/3*s1 <= 1/2 - 3/2*s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{5}\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1\\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{5} \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1\\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 1 - 2 s_1 \leq s_2 \quad & \textrm{(neu)} \\ s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1 \quad \textrm{(neu)}\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
Dieser Fall ist eine Nullmenge, da für die Grenzen von $s_2$ gilt:
solve_ineq(1 - 2*s1 <= 1/2 - 3/2*s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1 \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - s_1 \leq s_2 \quad & \textrm{(neu)}\\ s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1 \quad \textrm{(neu)}\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
Dieser Fall ist eine Nullmenge, da für die Grenzen von $s_2$ gilt:
solve_ineq(1/2 - s1 <= 1/2 - 3/2*s1) #false
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad \textrm{(neu)}\\ s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1 \quad \textrm{(neu)}\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
Bestimme obere Grenze für $s_2$:
bool( 1/3 - 2/3*s1 <= 1 - s1)
solve_ineq(1/3 - 2/3*s1 <= 1/2 - 3/2*s1)
Prüfe Grenzen für $s_2$:
solve_ineq(0 <= 1/3 - 2/3*s1) #true
bool(1/4 - 3/4*s1 <= 1/3 - 2/3*s1)
bool(1/3 - s1 <= 1/3 - 2/3*s1)
solve_ineq(0 <= 1/2 - 3/2*s1)
solve_ineq(1/4 - 3/4*s1 <= 1/2 - 3/2*s1)
solve_ineq(1/3 - s1 <= 1/2 - 3/2*s1)
Bestimme untere Grenze für $s_2$:
solve_ineq(0 <= 1/3 - s1) #true
solve_ineq(1/4 - 3/4*s1 <= 1/3 - s1) #true
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{5} \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{3} - s_1 \leq s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{5}\\ \frac{1}{3} - s_1 \leq s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & 1 - 2 s_1 \quad \textrm{(neu)}\\ s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1 \quad \textrm{(neu)}\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
Bestimme obere Grenze für $s_2$:
bool(1/2 - 3/2*s1 <= 1 - s1)
bool(1/2 - 3/2*s1 <= 1 - 2*s1)
Prüfe Grenzen für $s_2$:
solve_ineq(0 <= 1/2 - 3/2*s1)
solve_ineq(1/4 - 3/4*s1 <= 1/2 - 3/2*s1)
solve_ineq(1/3 - s1 <= 1/2 - 3/2*s1)
solve_ineq(1/3 - 2/3*s1 <= 1/2 - 3/2*s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{5} \\ 0 \leq s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \quad & \\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
Bestimme die untere Grenze für $s_2$:
solve_ineq(0 <= 1/3 - 2/3*s1) #true
bool(1/4 - 3/4*s1 <= 1/3 - 2/3*s1)
bool(1/3 - s1 <= 1/3 - 2/3*s1)
\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{5} \\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
\begin{align*} s_0 + s_1 + s_2 + s_3 & = 1\\ 0 \leq s_0 & \leq 1\\ 0 \leq s_1 & \leq 1\\ 0 \leq s_2 & \leq 1\\ 0 \leq s_3 & \leq 1\\ \ \\ 3 \cdot s_0 + 3 \cdot s_1 + 2 \cdot s_2 + s_3 & \leq c \\ s_3 & \geq s_0 + s_1 + 1 \\ s_2 & \geq s_0 \\ \end{align*}
forget()
var('s0,s1,s2,s3,c')
assume(0 <= s0)
assume(0 <= s1)
assume(0 <= s2)
assume(0 <= s3)
assume(s0 <= 1)
assume(s1 <= 1)
assume(s2 <= 1)
assume(s3 <= 1)
Asymptotisch:
\begin{align*} s_0 + s_1 + s_2 + s_3 & = 1\\ 0 \leq s_0 \leq &1\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1\\ 0 \leq s_3 \leq & 1\\ \ \\ 3 \cdot s_0 + 3 \cdot s_1 + 2 \cdot s_2 + s_3 & \leq c \\ s_0 + s_1 \leq s_3 \quad & \\ s_0 \leq s_2 \quad &\\ \end{align*}
Setze $s_1 = 1 - s_0 - s_2 - s_3$
s1 = 1 - s0 - s2 - s3
Forme Ungleichungen, die $s_2$ enthalten, um:
solve_ineq([3*s0+3*s1+2*s2+s3 <= c],[c,s3,s2,s0])
bool(s1 <= 1)
solve_ineq([0 <= s1],[s3,s2,s0,c])
solve_ineq([s0 + s1 <= s3],[s3,s2,s0,c])
\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 3 - s_2 - 2 \cdot s_3 \leq c \quad & \\ 0 \leq s_0 \leq &1 \\ s_0 \leq s_2 \leq& 1 \\ 0 \leq s_3 \leq &1 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \quad & \\ s_3 \leq & 1 - s_0 - s_2 \end{align*}
Prüfe neue Grenzen:
bool(1 - s0 - s2 <= 1)
bool(0 <= 1/2 - 1/2*s2)
solve_ineq([1/2 - 1/2*s2 <= 1 - s0 - s2],[s2,s0])
\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 3 - s_2 - 2 \cdot s_3 \leq c \quad & \\ 0 \leq s_0 \leq &1 \\ s_0 \leq s_2 \leq& 1 \\ s_2 \leq & 1 - 2 \cdot s_0 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \end{align*}
bool(1 - 2*s0 <= 1)
solve_ineq(s0 <= 1 - 2*s0)
\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 3 - s_2 - 2 \cdot s_3 \leq c \quad & \\ 0 \leq s_0 \leq & \frac{1}{3} \\ s_0 \leq s_2 \leq& 1 - 2 \cdot s_0 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \end{align*}
Forme Ungleichung um, um Grenze für $s_3$ zu erhalten:
solve_ineq([3 - s2 - 2*s3 <= c], [s3, s2, c])
\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 0 \leq s_0 \leq & \frac{1}{3} \\ s_0 \leq s_2 \leq& 1 - 2 \cdot s_0 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_2 \leq s_3 \quad &\\ \end{align*}
Prüfe Grenzen und daraus erhaltene neue Grenzen:
solve_ineq([s0 <= c - 2*s0 - 1],[s0,c])
solve_ineq([0 <= 1/3*c - 1/3])
\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 1 \leq c \quad & \\ 0 \leq s_0 \leq & \frac{1}{3} \\ s_0 \leq & \frac{1}{3}c - \frac{1}{3}\\ s_0 \leq s_2 \leq& 1 - 2 \cdot s_0 \\ s_2 \leq & c - 2s_0 -1 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_2 \leq s_3 \quad &\\ \end{align*}
Bestimme Grenzen:
solve_ineq([1/2 - 1/2*s2 >= 3/2 - 1/2*c - 1/2*s2],[s2,s0,c])
solve_ineq([1-2*s0 <= c - 2*s0 - 1],[s0,c])
solve_ineq([1/3 <= 1/3*c - 1/3])
\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 1 \leq c \leq & 2\\ 0 \leq s_0 \leq & \frac{1}{3}c - \frac{1}{3} \\ s_0 \leq s_2 \leq& c - 2s_0 -1 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \end{align*}
\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 2 \leq c \quad & \\ 0 \leq s_0 \leq & \frac{1}{3} \\ s_0 \leq s_2 \leq& 1 - 2 \cdot s_0 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \end{align*}
\begin{align*} s_0 + s_1 + s_2 + s_3 & = 1 \quad &\\ 0 \leq s_0 \leq & 1\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1\\ 0 \leq s_3 \leq & 1\\ \ \\ s_0 + 3 \cdot s_1 + 3 \cdot s_2 + 2 \cdot s_3 \leq c \quad & \\ s_0 \geq & s_1 + s_2 + 1 \\ s_3 \geq & s_1 \\ s_0 \geq & s_3 \\ \end{align*}
Asymptotisch: \begin{align*} s_0 + s_1 + s_2 + s_3 & = 1 \quad &\\ 0 \leq s_0 \leq & 1\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1\\ 0 \leq s_3 \leq & 1\\ \ \\ s_0 + 3 \cdot s_1 + 3 \cdot s_2 + 2 \cdot s_3 \leq c \quad & \\ s_1 + s_2 \leq s_0 \quad &\\ s_1 \leq s_3 \quad & \\ s_3 \leq s_0 \quad &\\ \end{align*}
setze $s_2 = 1 - s_0 - s_1 - s_3$
forget()
var('s0,s1,s2,s3,c')
assume(0 <= s0)
assume(0 <= s1)
assume(0 <= s2)
assume(0 <= s3)
assume(s0 <= 1)
assume(s1 <= 1)
assume(s2 <= 1)
assume(s3 <= 1)
s2 = 1 - s0 - s1 - s3
Forme Ungleichungen, die $s_2$ enthalten, um:
s0 + 3*s1 + 3*s2 +2*s3 <= c
solve_ineq([s1 + s2 <= s0], [s0,s3,s1])
bool(s2 <= 1)
solve_ineq([0 <= s2],[s0,s3,s1])
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 3 - 2 \cdot s_0 - s_3 \leq c \\ 0 \leq s_1 \leq & 1 \\ s_1 \leq s_3 \leq & 1 \\ s_3 \leq s_0 \leq & 1 \\ s_0 \leq & 1 - s_1 - s_3 \\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \quad &\\ \end{align*}
bool(1 - s1 - s3 <= 1)
Überprüfe neue Grenzen und daraus erhaltene neue Grenzen:
solve_ineq([s3 <= 1 - s1 - s3],[s3,s1])
solve_ineq(s1 <= 1/2 - 1/2*s1)
solve_ineq([1/2 - 1/2*s3 <= 1 - s1 - s3 ], [s3,s1])
solve_ineq([s1 <= 1 - 2*s1])
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 3 - 2 \cdot s_0 - s_3 \leq c \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq s_3 \leq & 1 - 2s_1\\ s_3 \leq & \frac{1}{2} - \frac{1}{2}s_1 \\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \quad &\\ \end{align*}
solve_ineq( 1/2 - 1/2*s3 >= s3) # --> Fall 1 und Fall 2
solve_ineq(1/2 -1/2*s1 <= 1 - 2*s1) #true
solve_ineq(1/3 <= 1/2 - 1/2*s1) #true
$(s_3 \leq \frac{1}{3})$ \begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 3 - 2 \cdot s_0 - s_3 \leq c \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq s_3 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
Forme Ungleichung um, um Grenze für $s_0$ zu erhalten:
solve_ineq([3 - 2*s0 - s3 <= c], [s0, s3, s1, c])
Prüfe Grenzen:
solve_ineq([3/2 - 1/2*c - 1/2*s3 <= 1 - s1 - s3],[s3,s1,c])
solve_ineq([s1 <= c - 2*s1 - 1],[s1,c])
solve_ineq(0 <= 1/3*c - 1/3)
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 1 \leq c \quad &\\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{3}c - \frac{1}{3}\\ s_1 \leq s_3 \leq & \frac{1}{3}\\ s_3 \leq & c - 2s_1 - 1\\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \quad & \end{align*}
Bestimme untere Grenze für $s_0$:
solve_ineq([1/2 - 1/2*s3 >= 3/2 - 1/2*c - 1/2*s3],[s3,s1,c])
Bestimme obere Grenze für $s_3$:
solve_ineq([1/3 <= c - 2*s1 - 1],[s1,c]) # --> Fall 1.1 und Fall 1.2
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 1 \leq c \quad &\\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{3}c - \frac{1}{3}\\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \quad \textrm{(neu)}\\ s_1 \leq s_3 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \quad & \end{align*}
prüfe neue Grenze:
solve_ineq(0 <= 1/2*c - 2/3)
Bestimme obere Grenze für $s_1$:
solve_ineq(1/3 <= 1/3*c - 1/3)
solve_ineq(1/3 <= 1/2*c - 2/3)
solve_ineq(1/3*c - 1/3 <= 1/2*c - 2/3)
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & 2\\ 0 \leq s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ s_1 \leq s_3 \leq & \frac{1}{3}\\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3\leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 2 \leq c \quad &\\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq s_3 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 1 \leq c \quad &\\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{3}c - \frac{1}{3}\\ \frac{1}{2}c - \frac{2}{3} \leq s_1 \quad & \textrm{(neu)}\\ s_1 \leq s_3 \leq & c - 2s_1 - 1\\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \quad & \end{align*}
Prüfe neue Grenze:
solve_ineq(1/2*c - 2/3 <= 1/3)
solve_ineq(1/2*c - 2/3 <= 1/3*c - 1/3)
Bestimme untere Grenze für $s_1$:
solve_ineq(1/2*c - 2/3 >= 0)
Bestimme obere Grenze für $s_1$:
solve_ineq(1/3*c - 1/3 <= 1/3)
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & 2\\ \frac{1}{2}c - \frac{2}{3} \leq s_1 \leq & \frac{1}{3}c - \frac{1}{3} \\ s_1 \leq s_3 \leq & c - 2s_1 - 1\\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 1 \leq c \leq & \frac{4}{3}\\ 0 \leq s_1 \leq & \frac{1}{3}c - \frac{1}{3} \\ s_1 \leq s_3 \leq & c - 2s_1 - 1\\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
$(\frac{1}{3} \leq s_3)$
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 3 - 2 \cdot s_0 - s_3 \leq c \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ \frac{1}{3} \leq s_3 \quad & \\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
da $s_1 \leq \frac{1}{3}$ gilt: \begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 3 - 2 \cdot s_0 - s_3 \leq c \\ 0 \leq s_1 \leq & \frac{1}{3} \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
Forme Ungleichung um, um Grenze für $s_0$ zu erhalten:
solve_ineq([3 - 2*s0 - s3 <= c], [s0, s3, s1, c])
Prüfe die neue(n) Grenze(n):
solve_ineq([3/2 - 1/2*c - 1/2*s3 <= 1 - s1 - s3], [s3, s1, c])
solve_ineq([1/3 <= c - 2*s1 - 1], [s1, c])
solve_ineq(0 <= 1/2*c - 2/3)
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \quad & \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq & c - 2s_1 - 1 \\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \quad &\\ \end{align*}
Bestimme untere Grenze für $s_0$:
solve_ineq([s3 >= 3/2 - 1/2*c - 1/2*s3], [s3,s1,c]) # --> Fall 2.1 und Fall 2.2
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \quad & \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq & c - 2s_1 - 1 \\ 1 - \frac{1}{3}c \leq s_3 \quad & \textrm{(neu)}\\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
Prüfe neue Grenze(n):
solve_ineq([1 - 1/3*c <= 1/2 - 1/2*s1],[s1,c])
solve_ineq([1 - 1/3*c <= c - 2*s1 - 1], [s1,c])
solve_ineq(0 <= 2/3*c - 1)
bool(3/2 >= 4/3)
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{3}{2} \leq c \quad & \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ s_1 \leq & \frac{2}{3}c - 1 \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq & c - 2s_1 - 1 \\ 1 - \frac{1}{3}c \leq s_3 \quad & \\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
Grenzen für $s_3$:
solve_ineq(1/3 >= 1 - 1/3*c)
solve_ineq([1/2 - 1/2*s1 <= c - 2*s1 - 1], [s1, c]) #true
obere Grenze für $s_1$:
solve_ineq(1/3 <= 1/2*c - 2/3)
solve_ineq(1/3 <= 2/3*c - 1)
solve_ineq(2/3*c -1 <= 1/2*c - 2/3)
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{3}{2} \leq c \leq & 2\\ 0 \leq s_1 \leq & \frac{2}{3}c - 1 \\ 1 - \frac{1}{3}c \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 2 \leq c \quad & \\ 0 \leq s_1 \leq & \frac{1}{3} \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \quad & \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq & c - 2s_1 - 1 \\ s_3 \leq & 1 - \frac{1}{3}c \quad \textrm{(neu)}\\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
Prüfe neue Grenze:
solve_ineq(1/3 <= 1 - 1/3*c)
Bestimme Grenze für $s_3$:
solve_ineq([c - 2*s1 - 1 <= 1 - 1/3*c], [s1, c])
solve_ineq([c - 2*s1 - 1 <= 1/2 - 1/2*s1], [s1, c])
solve_ineq([1 - 1/3*c <= c - 2*s1 - 1], [s1, c])
solve_ineq([1 - 1/3*c <= 1/2 - 1/2*s1], [s1,c]) #--> Fall 2.2.1 und Fall 2.2.2
Fall 2.2.1 \begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & 2\\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{2}{3}c - 1 \leq s_1 \quad & \textrm{(neu)}\\ \frac{1}{3} \leq s_3 \leq & c - 2s_1 - 1 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
Prüfe neue Grenze:
solve_ineq(2/3*c - 1 <= 1/3) #true
solve_ineq(2/3*c - 1 <= 1/2*c - 2/3) #true
Grenzen für $s_1$:
solve_ineq(2/3*c - 1 >= 0)
bool(3/2 > 4/3)
solve_ineq(1/2*c - 2/3 <= 1/3) #true
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & \frac{3}{2}\\ 0 \leq s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq & c - 2s_1 - 1 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{3}{2} \leq c \leq & 2\\ \frac{2}{3}c - 1 \leq s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq & c - 2s_1 - 1 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
Fall 2.2.2 \begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & 2 \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ s_1 \leq & \frac{2}{3}c - 1 \quad \textrm{(neu)} \\ \frac{1}{3} \leq s_3 \leq & 1 - \frac{1}{3}c \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
Prüfe neue Grenze:
solve_ineq(0 <= 2/3*c - 1)
Bestimme Grenzen für $s_1$:
solve_ineq(2/3*c - 1 <= 1/3)
solve_ineq(2/3*c - 1 <= 1/2*c - 2/3)
\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{3}{2} \leq c \leq & 2 \\ 0 \leq s_1 \leq & \frac{2}{3}c - 1 \\ \frac{1}{3} \leq s_3 \leq & 1 - \frac{1}{3}c \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}