
CSCI 195 – Intro to Programming w/Python
Parsing the Bible Text into a Python data structure

We have been given a version of the King James Bible whose contents have been encoded using a

simple text format. The following is a sample of the file’s contents.

Ge@1:1@In the beginning God created the heaven and the earth.

Ge@1:2@And the earth was without form, and void; and darkness was upon the face of the deep. And the Spirit of God moved upon the face

of the waters.

…

Ge@1:31@And God saw every thing that he had made, and, behold, it was very good. And the evening and the morning were the sixth day.

Ge@2:1@Thus the heavens and the earth were finished, and all the host of them.

…

Ge@50:26@So Joseph died, being an hundred and ten years old: and they embalmed him, and he was put in a coffin in Egypt.

Exo@1:1@Now these are the names of the children of Israel, which came into Egypt; every man and his household came with Jacob.

…

As you can see, each line of the file contains a single verse; at the beginning of the line is an abbreviation

of the book, chapter and verse, encoded in the format Book@Chapter:Verse Number@Verse Text.

Our goal will be to create a dictionary, with the keys being strings representing the book. Each entry in

the dictionary will be a list, with entry c-1 in the list representing chapter c (e.g., entry 0 represents

chapter 1, entry 1 represents chapter 2, and so on). The contents of each chapter will be a list of strings,

containing the text of each verse. As with the chapters, entry v-1 contains the text of verse v.

1. Using { } for dictionary, and [] for list, show what the contents of our dictionary will be after the

first two verses of Genesis 1 have been read and parsed by our program.

2. Write a statement that declares an empty dictionary named bible.

3. Write a statement that opens the file named kjv.atv using a with statement, and then iterates over

each line in that file with a for loop. Use the bible_file as the variable for the opened file, and

line as the loop variable.

CSCI 195 – Intro to Programming w/Python
Parsing the Bible Text into a Python data structure

Page 2 of 6

4. Assume that line stores a single line from the file. Write a series of statements that (1) strips off

any trailing whitespace from line, storing the stripped text back in line; (2) splits the variable

line on the @ sign, storing the result into a variable named parts; and (3), stores the

components of parts into variables named book, reference and verse_text, in that order.

5. Assuming that reference stores a chapter and verse combination (such as 1:1 or 2:50), write a

series of statements that (1) splits reference based on the : character, storing the result into a

variable named parts; (2) uses the int function to convert the first entry in parts into an

integer, storing the result into a variable named chapter; and (3) uses the int function to convert

the second entry in parts into an integer, storing the result into a variable named verse.

6. Write an if/else statement that checks to see if there is an entry in the dictionary bible for the

string variable book. Remember that you can use the in operator to check if a particular key exists

in a dictionary.

 If book does exist as a key in the bible dictionary, set the variable named book_chapters

to be the value in bible associated with the key book (the variable, not a literal string).

 If book does not exist as a key in bible, (1) set a variable book_chapters to be an empty

list, and then store book_chapters as the value for the key book in the bible dictionary.

CSCI 195 – Intro to Programming w/Python
Parsing the Bible Text into a Python data structure

Page 3 of 6

7. Write an if/else statement that checks whether the number of entries in the list named

book_chapters is at least as big as the variable chapter, which we assigned a value to in step

5. Fill in the body of the if/else according to the following logic:

 If the test is true, we know that there is already an entry in book_chapters corresponding to

the chapter represented by chapter, and so we should append the variable verse_text to

the list associated with chapter (remember chapter numbers are 1 based, but list indexes are

0 based)

 If the test is false, this is the first verse we’ve seen from this chapter. So we need to add a new

list containing only verse_text to the end of the book_chapters list.

8. Take the code from the previous steps and enter it into a new file named parse_bible.py in the in-

class-exercise folder named bible_parser (Start a new file by clicking the button from the

Files tab, enter the name parse_bible.py and then press Enter).

Add a print statement at the end as follows:

print bible["Ge"][0][0]

9. Execute the program, checking for any syntax errors:

python parse_bible.py

If all goes well, you should see the contents of Genesis 1:1. If you don’t, check the logic of each of

the statements that you’ve entered. You can use

python –m pdb parse_bible.py

to start the program in a debugger. You can then use n followed by Enter to execute the program

one line at a time, and use statements like print book to see the values of variables.

CSCI 195 – Intro to Programming w/Python
Parsing the Bible Text into a Python data structure

Page 4 of 6

10. Add a second print statement to print out the contents of the last verse:

print bible["Rev"][21][20]

and ensure the output is as expected

11. Now that we know our data structure is complete, we’ll add some interactivity. First, write a

statement that asks the user to enter a book in the bible and stores the user’s response as a variable

named book, and then sets the variable book_chapters to be the list of chapters in the

dictionary bible associated with the book entered by the user.

12. Assume the variables book and book_chapters has been set using the code you wrote above.
Determine what the following series of statements does:

list = []

for c in book_chapters:

 list.append(len(c))

print "{0}: {1}".format(book, max(list))

13. Consider the following “transcript” of an interactive session, with user input shown in bold:

python parse_bible.py

Enter the desired book: John

Enter the desired chapter [1 - 21]: 3

Enter the desired verse [1 - 36]: 16

John 3:16 For God so loved the world, that he gave his only begotten

Son, that whosoever believeth in him should not perish, but have

everlasting life.

Add code at the end of parse_bible.py to implement the functionality shown above. Make note of
how the program prompts the user with the appropriate limits for chapter number and verse
number.

CSCI 195 – Intro to Programming w/Python
Parsing the Bible Text into a Python data structure

Page 5 of 6

14. Add code to the end of your program that prints out the name of the book containing the fewest

chapters. Here’s a process you can use to figure this out:

Create a variable named fewest_chapters and set its value to the length of the list associated

with the string key Ge (it actually doesn’t really matter which book you pick here)

Create a second variable named book_with_fewest_chapters, and set it to the string value

Ge (must be the same as what you picked above).

Loop through the keys in the bible dictionary; each time through the loop:

 Compare the length of the list associated with the current key to fewest_chapters

 If that length is less than the value of fewest_chapters,

 update the values of both fewest_chapters and book_with_fewest_chapters

After the loop is done executing, print out the values of book_with_fewest_chapters and

fewest_chapters.

The correct answer is Obad (Obadiah) with a single chapter.

According to the web site bibleresources.org/how-to-study-bible, the "principle of first mention"

indicates that:

“It is important to look for the place in the Bible that a subject, attitude or principle is mentioned for

the first time, and see what it meant there.”

We'll want to modify our program so that it asks the user to enter a word, and the reference and first

where that word first occurs is printed. For example:

Enter a word you wish to find the first occurrence of: grace

First mention of grace is in Ge 6:8

15. In order to do this, we’re going to have to keep track of the ordering of the books. Rather than

entering this information ourselves, we can keep track of it while we parse the bible. To do this:

 Initialize an empty list named books before opening the file kjv.atv

 When you come across a book that is not yet in the dictionary named bible , append it to

books

16. Add the appropriate raw_input statement to the end of your program to ask the user for the

word to search for.

CSCI 195 – Intro to Programming w/Python
Parsing the Bible Text into a Python data structure

Page 6 of 6

17. Add code to find the first occurrence of the given word. I did this by writing 3 nested loops:

Loop over each book in the books list

 Loop over the chapters in the current book

 Loop over the verses in the current chapter

 Test to see if the desired word is contained within the current verse, using the in operator

I used variables found (Boolean, initially False and set to True when the desired word has been

found), chapter_num and verse_num to help me in my implementation

