[1X5 [33X[0;0YGradedModules[133X[101X
[1X5.1 [33X[0;0YGradedModules: Category and Representations[133X[101X
[1X5.2 [33X[0;0YGradedModules: Constructors[133X[101X
[1X5.3 [33X[0;0YGradedModules: Properties[133X[101X
[33X[0;0YFor more properties see the corresponding section [14X'Modules: Modules:
Properties'[114X) in the documentation of the [5Xhomalg[105X package.[133X
[1X5.4 [33X[0;0YGradedModules: Attributes[133X[101X
[1X5.4-1 BettiTable[101X
[29X[2XBettiTable[102X( [3XM[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X diagram[133X
[33X[0;0YThe Betti diagram of the [5Xhomalg[105X graded module [3XM[103X.[133X
[1X5.4-2 CastelnuovoMumfordRegularity[101X
[29X[2XCastelnuovoMumfordRegularity[102X( [3XM[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Yan integer[133X
[33X[0;0YThe Castelnuovo-Mumford regularity of the [5Xhomalg[105X graded module [3XM[103X.[133X
[1X5.4-3 CastelnuovoMumfordRegularityOfSheafification[101X
[29X[2XCastelnuovoMumfordRegularityOfSheafification[102X( [3XM[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Yan integer[133X
[33X[0;0YThe Castelnuovo-Mumford regularity of the sheafification of [5Xhomalg[105X graded
module [3XM[103X.[133X
[33X[0;0YFor more attributes see the corresponding section [14X'Modules: Modules:
Attributes'[114X) in the documentation of the [5Xhomalg[105X package.[133X
[1X5.5 [33X[0;0Y[5XLISHV[105X[101X[1X: Logical Implications for GradedModules[133X[101X
[1X5.6 [33X[0;0YGradedModules: Operations and Functions[133X[101X
[1X5.6-1 MonomialMap[101X
[29X[2XMonomialMap[102X( [3Xd[103X, [3XM[103X ) [32X operation
[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X map[133X
[33X[0;0YThe map from a free graded module onto all degree [3Xd[103X monomial generators of
the finitely generated [5Xhomalg[105X module [3XM[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X
[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X
[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X
[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xm := MonomialMap( 1, M );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( m );[127X[104X
[4X[28Xx^2,0,0,[128X[104X
[4X[28Xx*y,0,0,[128X[104X
[4X[28Xx*z,0,0,[128X[104X
[4X[28Xy^2,0,0,[128X[104X
[4X[28Xy*z,0,0,[128X[104X
[4X[28Xz^2,0,0,[128X[104X
[4X[28X0, x,0,[128X[104X
[4X[28X0, y,0,[128X[104X
[4X[28X0, z,0,[128X[104X
[4X[28X0, 0,1 [128X[104X
[4X[28X[128X[104X
[4X[28Xthe graded map is currently represented by the above 10 x 3 matrix[128X[104X
[4X[28X[128X[104X
[4X[28X(degrees of generators of target: [ -1, 0, 1 ])[128X[104X
[4X[32X[104X
[1X5.6-2 RandomMatrix[101X
[29X[2XRandomMatrix[102X( [3XS[103X, [3XT[103X ) [32X operation
[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X matrix[133X
[33X[0;0YA random matrix between the graded source module [3XS[103X and the graded target
module [3XT[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "a,b,c";;[127X[104X
[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X
[4X[25Xgap>[125X [27Xrand := RandomMatrix( S^1 + S^2, S^2 + S^3 + S^4 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27X#Display( rand );[127X[104X
[4X[25Xgap>[125X [27X#-3*a-b, -1, [127X[104X
[4X[25Xgap>[125X [27X#-a^2+a*b+2*b^2-2*a*c+2*b*c+c^2, -a+c, [127X[104X
[4X[25Xgap>[125X [27X#-2*a^3+5*a^2*b-3*b^3+3*a*b*c+3*b^2*c+2*a*c^2+2*b*c^2+c^3,-3*b^2-2*a*c-2*b*c+c^2[127X[104X
[4X[32X[104X
[1X5.6-3 GeneratorsOfHomogeneousPart[101X
[29X[2XGeneratorsOfHomogeneousPart[102X( [3Xd[103X, [3XM[103X ) [32X operation
[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X matrix[133X
[33X[0;0YThe resulting [5Xhomalg[105X matrix consists of a generating set (over [22XR[122X) of the
[3Xd[103X-th homogeneous part of the finitely generated [5Xhomalg[105X [22XS[122X-module [3XM[103X, where [22XR[122X
is the coefficients ring of the graded ring [22XS[122X with [22XS_0=R[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X
[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X
[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X
[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xm := GeneratorsOfHomogeneousPart( 1, M );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( m );[127X[104X
[4X[28Xx^2,0,0,[128X[104X
[4X[28Xx*y,0,0,[128X[104X
[4X[28Xy^2,0,0,[128X[104X
[4X[28X0, x,0,[128X[104X
[4X[28X0, y,0,[128X[104X
[4X[28X0, z,0,[128X[104X
[4X[28X0, 0,1 [128X[104X
[4X[28X(over a graded ring)[128X[104X
[4X[32X[104X
[33X[0;0YCompare with [2XMonomialMap[102X ([14X5.6-1[114X).[133X
[1X5.6-4 SubmoduleGeneratedByHomogeneousPart[101X
[29X[2XSubmoduleGeneratedByHomogeneousPart[102X( [3Xd[103X, [3XM[103X ) [32X operation
[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X module[133X
[33X[0;0YThe submodule of the [5Xhomalg[105X module [3XM[103X generated by the image of the [3Xd[103X-th
monomial map (--> [2XMonomialMap[102X ([14X5.6-1[114X)), or equivalently, by the generating
set of the [3Xd[103X-th homogeneous part of [3XM[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X
[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X
[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X
[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xn := SubmoduleGeneratedByHomogeneousPart( 1, M );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( M );[127X[104X
[4X[28Xz, 0, 0, [128X[104X
[4X[28X0, y^2*z,z^2,[128X[104X
[4X[28Xx^3,y^2, z [128X[104X
[4X[28X[128X[104X
[4X[28XCokernel of the map[128X[104X
[4X[28X[128X[104X
[4X[28XQ[x,y,z]^(1x3) --> Q[x,y,z]^(1x3),[128X[104X
[4X[28X[128X[104X
[4X[28Xcurrently represented by the above matrix[128X[104X
[4X[28X(graded, degrees of generators: [ -1, 0, 1 ])[128X[104X
[4X[25Xgap>[125X [27XDisplay( n );[127X[104X
[4X[28Xx^2,0,0,[128X[104X
[4X[28Xx*y,0,0,[128X[104X
[4X[28Xy^2,0,0,[128X[104X
[4X[28X0, x,0,[128X[104X
[4X[28X0, y,0,[128X[104X
[4X[28X0, z,0,[128X[104X
[4X[28X0, 0,1 [128X[104X
[4X[28X[128X[104X
[4X[28XA left submodule generated by the 7 rows of the above matrix[128X[104X
[4X[28X[128X[104X
[4X[28X(graded, degrees of generators: [ 1, 1, 1, 1, 1, 1, 1 ])[128X[104X
[4X[25Xgap>[125X [27XN := UnderlyingObject( n );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( N );[127X[104X
[4X[28Xz, 0, 0,0, 0, 0,0, [128X[104X
[4X[28X0, z, 0,0, 0, 0,0, [128X[104X
[4X[28X0, 0, z,0, 0, 0,0, [128X[104X
[4X[28X0, 0, 0,0, -z, y,0, [128X[104X
[4X[28Xx, 0, 0,0, y, 0,z, [128X[104X
[4X[28X-y,x, 0,0, 0, 0,0, [128X[104X
[4X[28X0, -y,x,0, 0, 0,0, [128X[104X
[4X[28X0, 0, 0,-y, x, 0,0, [128X[104X
[4X[28X0, 0, 0,-z, 0, x,0, [128X[104X
[4X[28X0, 0, 0,0, y*z,0,z^2, [128X[104X
[4X[28X0, 0, 0,y^2*z,0, 0,x*z^2[128X[104X
[4X[28X[128X[104X
[4X[28XCokernel of the map[128X[104X
[4X[28X[128X[104X
[4X[28XQ[x,y,z]^(1x11) --> Q[x,y,z]^(1x7),[128X[104X
[4X[28X[128X[104X
[4X[28Xcurrently represented by the above matrix[128X[104X
[4X[28X[128X[104X
[4X[28X(graded, degrees of generators: [ 1, 1, 1, 1, 1, 1, 1 ])[128X[104X
[4X[25Xgap>[125X [27Xgens := GeneratorsOfModule( N );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( gens );[127X[104X
[4X[28Xx^2,0,0,[128X[104X
[4X[28Xx*y,0,0,[128X[104X
[4X[28Xy^2,0,0,[128X[104X
[4X[28X0, x,0,[128X[104X
[4X[28X0, y,0,[128X[104X
[4X[28X0, z,0,[128X[104X
[4X[28X0, 0,1 [128X[104X
[4X[28X[128X[104X
[4X[28Xa set of 7 generators given by the rows of the above matrix[128X[104X
[4X[32X[104X
[1X5.6-5 RepresentationMapOfRingElement[101X
[29X[2XRepresentationMapOfRingElement[102X( [3Xr[103X, [3XM[103X, [3Xd[103X ) [32X operation
[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X matrix[133X
[33X[0;0YThe graded map induced by the homogeneous degree [13X[22X1[122X[113X ring element [3Xr[103X (of the
underlying [5Xhomalg[105X graded ring [22XS[122X) regarded as a [22XR[122X-linear map between the [3Xd[103X-th
and the [22X([122X[3Xd[103X[22X+1)[122X-st homogeneous part of the graded finitely generated [5Xhomalg[105X
[22XS[122X-module [22XM[122X, where [22XR[122X is the coefficients ring of the graded ring [22XS[122X with
[22XS_0=R[122X. The generating set of both modules is given by
[2XGeneratorsOfHomogeneousPart[102X ([14X5.6-3[114X). The entries of the matrix presenting
the map lie in the coefficients ring [22XR[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X
[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X
[4X[25Xgap>[125X [27Xx := Indeterminate( S, 1 );[127X[104X
[4X[28Xx[128X[104X
[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X
[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xm := RepresentationMapOfRingElement( x, M, 0 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( m );[127X[104X
[4X[28X1,0,0,0,0,0,0,[128X[104X
[4X[28X0,1,0,0,0,0,0,[128X[104X
[4X[28X0,0,0,1,0,0,0 [128X[104X
[4X[28X[128X[104X
[4X[28Xthe graded map is currently represented by the above 3 x 7 matrix[128X[104X
[4X[28X[128X[104X
[4X[28X(degrees of generators of target: [ 1, 1, 1, 1, 1, 1, 1 ])[128X[104X
[4X[32X[104X
[1X5.6-6 RepresentationMatrixOfKoszulId[101X
[29X[2XRepresentationMatrixOfKoszulId[102X( [3Xd[103X, [3XM[103X ) [32X operation
[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X matrix[133X
[33X[0;0YIt is assumed that all indeterminates of the underlying [5Xhomalg[105X graded ring [22XS[122X
are of degree [22X1[122X. The output is the [5Xhomalg[105X matrix of the multiplication map
[22XHom( A, M_[3Xd[103X ) -> Hom( A, M_[3Xd[103X+1 )[122X, where [22XA[122X is the Koszul dual ring of [22XS[122X,
defined using the operation [10XKoszulDualRing[110X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X
[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X
[4X[25Xgap>[125X [27XA := KoszulDualRing( S, "a,b,c" );;[127X[104X
[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X
[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xm := RepresentationMatrixOfKoszulId( 0, M );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( m );[127X[104X
[4X[28Xa,b,0,0,0,0,0,[128X[104X
[4X[28X0,a,b,0,0,0,0,[128X[104X
[4X[28X0,0,0,a,b,c,0 [128X[104X
[4X[28X(over a graded ring)[128X[104X
[4X[32X[104X
[1X5.6-7 RepresentationMapOfKoszulId[101X
[29X[2XRepresentationMapOfKoszulId[102X( [3Xd[103X, [3XM[103X ) [32X operation
[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X map[133X
[33X[0;0YIt is assumed that all indeterminates of the underlying [5Xhomalg[105X graded ring [22XS[122X
are of degree [22X1[122X. The output is the the multiplication map [22XHom( A, M_[3Xd[103X ) ->
Hom( A, M_[3Xd[103X+1 )[122X, where [22XA[122X is the Koszul dual ring of [22XS[122X, defined using the
operation [10XKoszulDualRing[110X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X
[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X
[4X[25Xgap>[125X [27XA := KoszulDualRing( S, "a,b,c" );;[127X[104X
[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X
[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xm := RepresentationMapOfKoszulId( 0, M );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( m );[127X[104X
[4X[28Xa,b,0,0,0,0,0,[128X[104X
[4X[28X0,a,b,0,0,0,0,[128X[104X
[4X[28X0,0,0,a,b,c,0 [128X[104X
[4X[28X[128X[104X
[4X[28Xthe graded map is currently represented by the above 3 x 7 matrix[128X[104X
[4X[28X[128X[104X
[4X[28X(degrees of generators of target: [ 4, 4, 4, 4, 4, 4, 4 ])[128X[104X
[4X[32X[104X
[1X5.6-8 KoszulRightAdjoint[101X
[29X[2XKoszulRightAdjoint[102X( [3XM[103X, [3Xdegree_lowest[103X, [3Xdegree_highest[103X ) [32X operation
[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X cocomplex[133X
[33X[0;0YIt is assumed that all indeterminates of the underlying [5Xhomalg[105X graded ring [22XS[122X
are of degree [22X1[122X. Compute the [5Xhomalg[105X [22XA[122X-cocomplex [22XC[122X of Koszul maps of the
[5Xhomalg[105X [22XS[122X-module [3XM[103X (--> [2XRepresentationMapOfKoszulId[102X ([14X5.6-7[114X)) in the [22X[[122X
[3Xdegree_lowest[103X .. [3Xdegree_highest[103X [22X][122X. The Castelnuovo-Mumford regularity of [3XM[103X
is characterized as the highest degree [22Xd[122X, such that [22XC[122X is not exact at [22Xd[122X. [22XA[122X
is the Koszul dual ring of [22XS[122X, defined using the operation [10XKoszulDualRing[110X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X
[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X
[4X[25Xgap>[125X [27XA := KoszulDualRing( S, "a,b,c" );;[127X[104X
[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X
[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ], S );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCastelnuovoMumfordRegularity( M );[127X[104X
[4X[28X1[128X[104X
[4X[25Xgap>[125X [27XR := KoszulRightAdjoint( M, -5, 5 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XR := KoszulRightAdjoint( M, 1, 5 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XR := KoszulRightAdjoint( M, 0, 5 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XR := KoszulRightAdjoint( M, -5, 5 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XH := Cohomology( R );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XByASmallerPresentation( H );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCohomology( R, -2 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCohomology( R, -3 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCohomology( R, -1 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCohomology( R, 0 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCohomology( R, 1 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCohomology( R, 2 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCohomology( R, 3 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCohomology( R, 4 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( Cohomology( R, -1 ) );[127X[104X
[4X[28XQ{a,b,c}/< b, a >[128X[104X
[4X[28X[128X[104X
[4X[28X(graded, degree of generator: 0)[128X[104X
[4X[25Xgap>[125X [27XDisplay( Cohomology( R, 0 ) );[127X[104X
[4X[28XQ{a,b,c}/< c, b, a >[128X[104X
[4X[28X[128X[104X
[4X[28X(graded, degree of generator: 0)[128X[104X
[4X[25Xgap>[125X [27XDisplay( Cohomology( R, 1 ) );[127X[104X
[4X[28XQ{a,b,c}/< b, a >[128X[104X
[4X[28X[128X[104X
[4X[28X(graded, degree of generator: 2)[128X[104X
[4X[32X[104X
[1X5.6-9 HomogeneousPartOverCoefficientsRing[101X
[29X[2XHomogeneousPartOverCoefficientsRing[102X( [3Xd[103X, [3XM[103X ) [32X operation
[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X module[133X
[33X[0;0YThe degree [22Xd[122X homogeneous part of the graded [22XR[122X-module [3XM[103X as a module over the
coefficient ring or field of [22XR[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X
[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X
[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x, y^2, z^3 ]", 3, 1, S );;[127X[104X
[4X[25Xgap>[125X [27XM := Subobject( M, ( 1 * S )^0 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCastelnuovoMumfordRegularity( M );[127X[104X
[4X[28X4[128X[104X
[4X[25Xgap>[125X [27XM1 := HomogeneousPartOverCoefficientsRing( 1, M );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xgen1 := GeneratorsOfModule( M1 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( M1 );[127X[104X
[4X[28XQ^(1 x 1)[128X[104X
[4X[28X[128X[104X
[4X[28X(graded, degree of generator: 1)[128X[104X
[4X[25Xgap>[125X [27XM2 := HomogeneousPartOverCoefficientsRing( 2, M );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( M2 );[127X[104X
[4X[28XQ^(1 x 4)[128X[104X
[4X[28X[128X[104X
[4X[28X(graded, degrees of generators: [ 2, 2, 2, 2 ])[128X[104X
[4X[25Xgap>[125X [27Xgen2 := GeneratorsOfModule( M2 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XM3 := HomogeneousPartOverCoefficientsRing( 3, M );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( M3 );[127X[104X
[4X[28XQ^(1 x 9)[128X[104X
[4X[28X[128X[104X
[4X[28X(graded, degrees of generators: [ 3, 3, 3, 3, 3, 3, 3, 3, 3 ])[128X[104X
[4X[25Xgap>[125X [27Xgen3 := GeneratorsOfModule( M3 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( gen1 );[127X[104X
[4X[28Xx[128X[104X
[4X[28X[128X[104X
[4X[28Xa set consisting of a single generator given by (the row of) the above matrix[128X[104X
[4X[25Xgap>[125X [27XDisplay( gen2 );[127X[104X
[4X[28Xx^2,[128X[104X
[4X[28Xx*y,[128X[104X
[4X[28Xx*z,[128X[104X
[4X[28Xy^2 [128X[104X
[4X[28X[128X[104X
[4X[28Xa set of 4 generators given by the rows of the above matrix[128X[104X
[4X[25Xgap>[125X [27XDisplay( gen3 );[127X[104X
[4X[28Xx^3, [128X[104X
[4X[28Xx^2*y,[128X[104X
[4X[28Xx^2*z,[128X[104X
[4X[28Xx*y*z,[128X[104X
[4X[28Xx*z^2,[128X[104X
[4X[28Xx*y^2,[128X[104X
[4X[28Xy^3, [128X[104X
[4X[28Xy^2*z,[128X[104X
[4X[28Xz^3 [128X[104X
[4X[28X[128X[104X
[4X[28Xa set of 9 generators given by the rows of the above matrix[128X[104X
[4X[32X[104X