1 Category of Matrices 1.1 Constructors 1.1-1 MatrixCategory MatrixCategory( F )  attribute Returns: a category The argument is a homalg field F. The output is the matrix category over F. Objects in this category are non-negative integers. Morphisms from a non-negative integer m to a non-negative integer n are given by m \times n matrices. 1.1-2 VectorSpaceMorphism VectorSpaceMorphism( S, M, R )  operation Returns: a morphism in \mathrm{Hom}(S,R) The arguments are an object S in the category of matrices over a homalg field F, a homalg matrix M over F, and another object R in the category of matrices over F. The output is the morphism S \rightarrow R in the category of matrices over F whose underlying matrix is given by M. 1.1-3 VectorSpaceObject VectorSpaceObject( d, F )  operation Returns: an object The arguments are a non-negative integer d and a homalg field F. The output is an object in the category of matrices over F of dimension d. 1.2 GAP Categories 1.2-1 IsVectorSpaceMorphism IsVectorSpaceMorphism( object )  filter Returns: true or false The GAP category of morphisms in the category of matrices of a field F. 1.2-2 IsVectorSpaceObject IsVectorSpaceObject( object )  filter Returns: true or false The GAP category of objects in the category of matrices of a field F. 1.3 Attributes 1.3-1 UnderlyingFieldForHomalg UnderlyingFieldForHomalg( alpha )  attribute Returns: a homalg field The argument is a morphism \alpha in the matrix category over a homalg field F. The output is the field F. 1.3-2 UnderlyingMatrix UnderlyingMatrix( alpha )  attribute Returns: a homalg matrix The argument is a morphism \alpha in a matrix category. The output is its underlying matrix M. 1.3-3 UnderlyingFieldForHomalg UnderlyingFieldForHomalg( A )  attribute Returns: a homalg field The argument is an object A in the matrix category over a homalg field F. The output is the field F. 1.3-4 Dimension Dimension( A )  attribute Returns: a non-negative integer The argument is an object A in a matrix category. The output is the dimension of A.