13 Examples 13.1 ExtExt This corresponds to Example B.2 in [Bar].  Example  gap> ZZ := HomalgRingOfIntegers( ); Z gap> imat := HomalgMatrix( "[ \ >  262, -33, 75, -40, \ >  682, -86, 196, -104, \ >  1186, -151, 341, -180, \ > -1932, 248, -556, 292, \ >  1018, -127, 293, -156 \ > ]", 5, 4, ZZ );  gap> M := LeftPresentation( imat );  gap> N := Hom( ZZ, M );  gap> F := InsertObjectInMultiFunctor( Functor_Hom_for_fp_modules, 2, N, "TensorN" );  gap> G := LeftDualizingFunctor( ZZ );; gap> II_E := GrothendieckSpectralSequence( F, G, M );  gap> Display( II_E ); The associated transposed spectral sequence:  a homological spectral sequence at bidegrees [ [ 0 .. 1 ], [ -1 .. 0 ] ] --------- Level 0:   * *  * * --------- Level 1:   * *  . . --------- Level 2:   s s  . .  Now the spectral sequence of the bicomplex:  a homological spectral sequence at bidegrees [ [ -1 .. 0 ], [ 0 .. 1 ] ] --------- Level 0:   * *  * * --------- Level 1:   * *  . s --------- Level 2:   s s  . s gap> filt := FiltrationBySpectralSequence( II_E, 0 );   -1:  of > gap> ByASmallerPresentation( filt );    -1:  of > gap> m := IsomorphismOfFiltration( filt );   13.2 Purity This corresponds to Example B.3 in [Bar].  Example  gap> ZZ := HomalgRingOfIntegers( ); Z gap> imat := HomalgMatrix( "[ \ >  262, -33, 75, -40, \ >  682, -86, 196, -104, \ >  1186, -151, 341, -180, \ > -1932, 248, -556, 292, \ >  1018, -127, 293, -156 \ > ]", 5, 4, ZZ );  gap> M := LeftPresentation( imat );  gap> filt := PurityFiltration( M );    -1:  of > gap> M;  gap> II_E := SpectralSequence( filt );  gap> Display( II_E ); The associated transposed spectral sequence:  a homological spectral sequence at bidegrees [ [ 0 .. 1 ], [ -1 .. 0 ] ] --------- Level 0:   * *  * * --------- Level 1:   * *  . . --------- Level 2:   s .  . .  Now the spectral sequence of the bicomplex:  a homological spectral sequence at bidegrees [ [ -1 .. 0 ], [ 0 .. 1 ] ] --------- Level 0:   * *  * * --------- Level 1:   * *  . s --------- Level 2:   s .  . s gap> m := IsomorphismOfFiltration( filt );  gap> IsIdenticalObj( Range( m ), M ); true gap> Source( m );  gap> Display( last ); [ [ 0, 2, 0 ],  [ 0, 0, 12 ] ]  Cokernel of the map  Z^(1x2) --> Z^(1x3),  currently represented by the above matrix gap> Display( filt ); Degree 0:  Z^(1 x 1) ---------- Degree -1:  Z/< 2 > + Z/< 12 >   13.3 TorExt-Grothendieck This corresponds to Example B.5 in [Bar].  Example  gap> ZZ := HomalgRingOfIntegers( ); Z gap> imat := HomalgMatrix( "[ \ >  262, -33, 75, -40, \ >  682, -86, 196, -104, \ >  1186, -151, 341, -180, \ > -1932, 248, -556, 292, \ >  1018, -127, 293, -156 \ > ]", 5, 4, ZZ );  gap> M := LeftPresentation( imat );  gap> F := InsertObjectInMultiFunctor( Functor_TensorProduct_for_fp_modules, 2, M, "TensorM" );  gap> G := LeftDualizingFunctor( ZZ );; gap> II_E := GrothendieckSpectralSequence( F, G, M );  gap> Display( II_E ); The associated transposed spectral sequence:  a cohomological spectral sequence at bidegrees [ [ 0 .. 1 ], [ -1 .. 0 ] ] --------- Level 0:   * *  * * --------- Level 1:   * *  . . --------- Level 2:   s s  . .  Now the spectral sequence of the bicomplex:  a cohomological spectral sequence at bidegrees [ [ -1 .. 0 ], [ 0 .. 1 ] ] --------- Level 0:   * *  * * --------- Level 1:   * *  . s --------- Level 2:   s s  . s gap> filt := FiltrationBySpectralSequence( II_E, 0 );   0:  of > gap> ByASmallerPresentation( filt );   0:  of > gap> m := IsomorphismOfFiltration( filt );   13.4 TorExt This corresponds to Example B.6 in [Bar].  Example  gap> ZZ := HomalgRingOfIntegers( ); Z gap> imat := HomalgMatrix( "[ \ >  262, -33, 75, -40, \ >  682, -86, 196, -104, \ >  1186, -151, 341, -180, \ > -1932, 248, -556, 292, \ >  1018, -127, 293, -156 \ > ]", 5, 4, ZZ );  gap> M := LeftPresentation( imat );  gap> P := Resolution( M );  gap> GP := Hom( P );  gap> FGP := GP * P;  gap> BC := HomalgBicomplex( FGP );  gap> p_degrees := ObjectDegreesOfBicomplex( BC )[1]; [ 0, 1 ] gap> II_E := SecondSpectralSequenceWithFiltration( BC, p_degrees );  gap> Display( II_E ); The associated transposed spectral sequence:  a cohomological spectral sequence at bidegrees [ [ 0 .. 1 ], [ -1 .. 0 ] ] --------- Level 0:   * *  * * --------- Level 1:   * *  . . --------- Level 2:   s s  . .  Now the spectral sequence of the bicomplex:  a cohomological spectral sequence at bidegrees [ [ -1 .. 0 ], [ 0 .. 1 ] ] --------- Level 0:   * *  * * --------- Level 1:   * *  * * --------- Level 2:   s s  . s gap> filt := FiltrationBySpectralSequence( II_E, 0 );   0:  of > gap> ByASmallerPresentation( filt );   0:  of > gap> m := IsomorphismOfFiltration( filt );