[1X7 [33X[0;0YToric morphisms[133X[101X
[1X7.1 [33X[0;0YToric morphisms: Category and Representations[133X[101X
[1X7.1-1 IsToricMorphism[101X
[29X[2XIsToricMorphism[102X( [3XM[103X ) [32X Category
[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X
[33X[0;0YThe [5XGAP[105X category of toric morphisms. A toric morphism is defined by a grid
homomorphism, which is compatible with the fan structure of the two
varieties.[133X
[1X7.2 [33X[0;0YToric morphisms: Properties[133X[101X
[1X7.2-1 IsMorphism[101X
[29X[2XIsMorphism[102X( [3Xmorph[103X ) [32X property
[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X
[33X[0;0YChecks if the grid morphism [3Xmorph[103X respects the fan structure.[133X
[1X7.2-2 IsProper[101X
[29X[2XIsProper[102X( [3Xmorph[103X ) [32X property
[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X
[33X[0;0YChecks if the defined morphism [3Xmorph[103X is proper.[133X
[1X7.3 [33X[0;0YToric morphisms: Attributes[133X[101X
[1X7.3-1 SourceObject[101X
[29X[2XSourceObject[102X( [3Xmorph[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Ya variety[133X
[33X[0;0YReturns the source object of the morphism [3Xmorph[103X. This attribute is a must
have.[133X
[1X7.3-2 UnderlyingGridMorphism[101X
[29X[2XUnderlyingGridMorphism[102X( [3Xmorph[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Ya map[133X
[33X[0;0YReturns the grid map which defines [3Xmorph[103X.[133X
[1X7.3-3 ToricImageObject[101X
[29X[2XToricImageObject[102X( [3Xmorph[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Ya variety[133X
[33X[0;0YReturns the variety which is created by the fan which is the image of the
fan of the source of [3Xmorph[103X. This is not an image in the usual sense, but a
toric image.[133X
[1X7.3-4 RangeObject[101X
[29X[2XRangeObject[102X( [3Xmorph[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Ya variety[133X
[33X[0;0YReturns the range of the morphism [3Xmorph[103X. If no range is given (yes, this is
possible), the method returns the image.[133X
[1X7.3-5 MorphismOnWeilDivisorGroup[101X
[29X[2XMorphismOnWeilDivisorGroup[102X( [3Xmorph[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Ya morphism[133X
[33X[0;0YReturns the associated morphism between the divisor group of the range of
[3Xmorph[103X and the divisor group of the source.[133X
[1X7.3-6 ClassGroup[101X
[29X[2XClassGroup[102X( [3Xmorph[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Ya morphism[133X
[33X[0;0YReturns the associated morphism between the class groups of source and range
of the morphism [3Xmorph[103X[133X
[1X7.3-7 MorphismOnCartierDivisorGroup[101X
[29X[2XMorphismOnCartierDivisorGroup[102X( [3Xmorph[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Ya morphism[133X
[33X[0;0YReturns the associated morphism between the Cartier divisor groups of source
and range of the morphism [3Xmorph[103X[133X
[1X7.3-8 PicardGroup[101X
[29X[2XPicardGroup[102X( [3Xmorph[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Ya morphism[133X
[33X[0;0YReturns the associated morphism between the class groups of source and range
of the morphism [3Xmorph[103X[133X
[1X7.4 [33X[0;0YToric morphisms: Methods[133X[101X
[1X7.4-1 UnderlyingListList[101X
[29X[2XUnderlyingListList[102X( [3Xmorph[103X ) [32X attribute
[6XReturns:[106X [33X[0;10Ya list[133X
[33X[0;0YReturns a list of list which represents the grid homomorphism.[133X
[1X7.5 [33X[0;0YToric morphisms: Constructors[133X[101X
[1X7.5-1 ToricMorphism[101X
[29X[2XToricMorphism[102X( [3Xvari[103X, [3Xlis[103X ) [32X operation
[6XReturns:[106X [33X[0;10Ya morphism[133X
[33X[0;0YReturns the toric morphism with source [3Xvari[103X which is represented by the
matrix [3Xlis[103X. The range is set to the image.[133X
[1X7.5-2 ToricMorphism[101X
[29X[2XToricMorphism[102X( [3Xvari[103X, [3Xlis[103X, [3Xvari2[103X ) [32X operation
[6XReturns:[106X [33X[0;10Ya morphism[133X
[33X[0;0YReturns the toric morphism with source [3Xvari[103X and range [3Xvari2[103X which is
represented by the matrix [3Xlis[103X.[133X
[1X7.6 [33X[0;0YToric morphisms: Examples[133X[101X
[1X7.6-1 [33X[0;0YMorphism between toric varieties and their class groups[133X[101X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XP1 := Polytope([[0],[1]]);[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XP2 := Polytope([[0,0],[0,1],[1,0]]);[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XP1 := ToricVariety( P1 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XP2 := ToricVariety( P2 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XP1P2 := P1*P2;[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XClassGroup( P1 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay(ByASmallerPresentation(last));[127X[104X
[4X[28XZ^(1 x 1)[128X[104X
[4X[25Xgap>[125X [27XClassGroup( P2 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay(ByASmallerPresentation(last));[127X[104X
[4X[28XZ^(1 x 1)[128X[104X
[4X[25Xgap>[125X [27XClassGroup( P1P2 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( last );[127X[104X
[4X[28XZ^(1 x 2)[128X[104X
[4X[25Xgap>[125X [27XPicardGroup( P1P2 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XP1P2;[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XP2P1:=P2*P1;[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XM := [[0,0,1],[1,0,0],[0,1,0]];[127X[104X
[4X[28X[ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ][128X[104X
[4X[25Xgap>[125X [27XM := ToricMorphism(P1P2,M,P2P1);[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XIsMorphism(M);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XClassGroup(M);[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay(last);[127X[104X
[4X[28X[ [ 0, 1 ],[128X[104X
[4X[28X [ 1, 0 ] ][128X[104X
[4X[28X[128X[104X
[4X[28Xthe map is currently represented by the above 2 x 2 matrix[128X[104X
[4X[25Xgap>[125X [27XByASmallerPresentation(ClassGroup(M));[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay(last);[127X[104X
[4X[28X[ [ 0, 1 ],[128X[104X
[4X[28X [ 1, 0 ] ][128X[104X
[4X[28X[128X[104X
[4X[28Xthe map is currently represented by the above 2 x 2 matrix[128X[104X
[4X[32X[104X