1
Show that each of the following numbers is algebraic over ${\\mathbb Q}$ by finding the minimal polynomial of the number over ${\\mathbb Q}\\text{.}$
$\\sqrt{ 1/3 + \\sqrt{7} }$
$\\sqrt{ 3} + \\sqrt[3]{5}$
$\\sqrt{3} + \\sqrt{2}\\, i$
$\\cos \\theta + i \\sin \\theta$ for $\\theta = 2 \\pi /n$ with $n \\in {\\mathbb N}$
$\\sqrt{ \\sqrt[3]{2} - i }$
(a) $x^4 - (2/3) x^2 - 62/9\\text{;}$ (c) $x^4 - 2 x^2 + 25\\text{.}$