1
Which of the following sets are rings with respect to the usual operations of addition and multiplication? If the set is a ring, is it also a field?
$7 {\\mathbb Z}$
${\\mathbb Z}_{18}$
${\\mathbb Q} ( \\sqrt{2}\\, ) = \\{a + b \\sqrt{2} : a, b \\in {\\mathbb Q}\\}$
${\\mathbb Q} ( \\sqrt{2}, \\sqrt{3}\\, ) = \\{a + b \\sqrt{2} + c \\sqrt{3} + d \\sqrt{6} : a, b, c, d \\in {\\mathbb Q}\\}$
${\\mathbb Z}[\\sqrt{3}\\, ] = \\{ a + b \\sqrt{3} : a, b \\in {\\mathbb Z} \\}$
$R = \\{a + b \\sqrt[3]{3} : a, b \\in {\\mathbb Q} \\}$
${\\mathbb Z}[ i ] = \\{ a + b i : a, b \\in {\\mathbb Z} \\text{ and } i^2 = -1 \\}$
${\\mathbb Q}( \\sqrt[3]{3}\\, ) = \\{ a + b \\sqrt[3]{3} + c \\sqrt[3]{9} : a, b, c \\in {\\mathbb Q} \\}$
(a) $7 {\\mathbb Z}$ is a ring but not a field; (c) ${\\mathbb Q}(\\sqrt{2}\\, )$ is a field; (f) $R$ is not a ring.