Proof
(1) $\\Rightarrow$ (2). Let $E$ be a finite algebraic extension of $F\\text{.}$ Then $E$ is a finite dimensional vector space over $F$ and there exists a basis consisting of elements $\\alpha_1, \\ldots, \\alpha_n$ in $E$ such that $E = F(\\alpha_1, \\ldots, \\alpha_n)\\text{.}$ Each $\\alpha_i$ is algebraic over $F$ by Theorem 21.15.
(2) $\\Rightarrow$ (3). Suppose that $E = F(\\alpha_1, \\ldots, \\alpha_n)\\text{,}$ where every $\\alpha_i$ is algebraic over $F\\text{.}$ Then
\n\\begin{equation*}\nE = F(\\alpha_1, \\ldots, \\alpha_n) \\supset F(\\alpha_1, \\ldots, \\alpha_{n - 1} ) \\supset \\cdots \\supset F( \\alpha_1 ) \\supset F,\n\\end{equation*}\n
where each field $F(\\alpha_1, \\ldots, \\alpha_i)$ is algebraic over $F(\\alpha_1, \\ldots, \\alpha_{i - 1})\\text{.}$
(3) $\\Rightarrow$ (1). Let
\n\\begin{equation*}\nE = F(\\alpha_1, \\ldots, \\alpha_n) \\supset F(\\alpha_1, \\ldots, \\alpha_{n - 1} ) \\supset \\cdots \\supset F( \\alpha_1 ) \\supset F,\n\\end{equation*}\n
where each field $F(\\alpha_1, \\ldots, \\alpha_i)$ is algebraic over $F(\\alpha_1, \\ldots, \\alpha_{i - 1})\\text{.}$ Since
\n\\begin{equation*}\nF(\\alpha_1, \\ldots, \\alpha_i) = F(\\alpha_1, \\ldots, \\alpha_{i - 1} )(\\alpha_i)\n\\end{equation*}\n
is simple extension and $\\alpha_i$ is algebraic over $F(\\alpha_1, \\ldots, \\alpha_{i - 1})\\text{,}$ it follows that
\n\\begin{equation*}\n[ F(\\alpha_1, \\ldots, \\alpha_i) : F(\\alpha_1, \\ldots, \\alpha_{i - 1} )]\n\\end{equation*}\n
is finite for each $i\\text{.}$ Therefore, $[E : F]$ is finite.