Theorem11.10First Isomorphism Theorem
If $\\psi : G \\rightarrow H$ is a group homomorphism with $K =\\ker \\psi\\text{,}$ then $K$ is normal in $G\\text{.}$ Let $\\phi: G \\rightarrow G/K$ be the canonical homomorphism. Then there exists a unique isomorphism $\\eta: G/K \\rightarrow \\psi(G)$ such that $\\psi = \\eta \\phi\\text{.}$