Principle2.1First Principle of Mathematical Induction
Let $S(n)$ be a statement about integers for $n \\in {\\mathbb N}$ and suppose $S(n_0)$ is true for some integer $n_0\\text{.}$ If for all integers $k$ with $k \\geq n_0\\text{,}$ $S(k)$ implies that $S(k+1)$ is true, then $S(n)$ is true for all integers $n$ greater than or equal to $n_0\\text{.}$