Example16.7
For an example of a noncommutative division ring, let
\n\\begin{equation*}\n1 = \n\\begin{pmatrix}\n1 & 0 \\\\\n0 & 1\n\\end{pmatrix},\n\\quad\n{\\mathbf i}\n=\n\\begin{pmatrix}\n0 & 1 \\\\\n-1 & 0\n\\end{pmatrix},\n\\quad\n{\\mathbf j} =\n\\begin{pmatrix}\n0 & i \\\\\ni & 0\n\\end{pmatrix},\n\\quad\n{\\mathbf k} = \n\\begin{pmatrix}\ni & 0 \\\\\n0 & -i\n\\end{pmatrix},\n\\end{equation*}\n
where $i^2 = -1\\text{.}$ These elements satisfy the following relations:
\n\\begin{align*}\n{\\mathbf i}^2 = {\\mathbf j}^2 & = {\\mathbf k}^2 = -1\\\\\n{\\mathbf i} {\\mathbf j} & = {\\mathbf k} \\\\\n{\\mathbf j} {\\mathbf k} & = {\\mathbf i} \\\\\n{\\mathbf k} {\\mathbf i} & = {\\mathbf j} \\\\\n{\\mathbf j} {\\mathbf i} & = - {\\mathbf k} \\\\\n{\\mathbf k} {\\mathbf j} & = - {\\mathbf i} \\\\\n{\\mathbf i} {\\mathbf k} & = - {\\mathbf j}. \n\\end{align*}\n
Let ${\\mathbb H}$ consist of elements of the form $a + b {\\mathbf i} + c {\\mathbf j} +d {\\mathbf k}\\text{,}$ where $a, b , c, d$ are real numbers. Equivalently, ${\\mathbb H}$ can be considered to be the set of all $2 \\times 2$ matrices of the form
\n\\begin{equation*}\n\\begin{pmatrix}\n\\alpha & \\beta \\\\\n-\\overline{\\beta} & \\overline{\\alpha }\n\\end{pmatrix},\n\\end{equation*}\n
where $\\alpha = a + di$ and $\\beta = b+ci$ are complex numbers. We can define addition and multiplication on ${\\mathbb H}$ either by the usual matrix operations or in terms of the generators 1, ${\\mathbf i}\\text{,}$ ${\\mathbf j}\\text{,}$ and ${\\mathbf k}\\text{:}$
\n\\begin{gather*}\n(a_1 + b_1 {\\mathbf i} + c_1 {\\mathbf j} +d_1 {\\mathbf k} ) + ( a_2 + b_2 {\\mathbf i} + c_2 {\\mathbf j} +d_2 {\\mathbf k} )\\\\\n= (a_1 + a_2) + ( b_1 + b_2) {\\mathbf i} + ( c_1 + c_2) \\mathbf j + (d_1 + d_2) \\mathbf k\n\\end{gather*}\n
and
\n\\begin{equation*}\n(a_1 + b_1 {\\mathbf i} + c_1 {\\mathbf j} +d_1 {\\mathbf k} ) ( a_2 + b_2 {\\mathbf i} + c_2 {\\mathbf j} +d_2 {\\mathbf k} ) = \\alpha + \\beta {\\mathbf i} + \\gamma {\\mathbf j} + \\delta {\\mathbf k},\n\\end{equation*}\n
where
\n\\begin{align*}\n\\alpha & = a_1 a_2 - b_1 b_2 - c_1 c_2 -d_1 d_2\\\\\n\\beta & = a_1 b_2 + a_2 b_1 + c_1 d_2 - d_1 c_2\\\\\n\\gamma & = a_1 c_2 - b_1 d_2 + c_1 a_2 + d_1 b_2\\\\\n\\delta & = a_1 d_2 + b_1 c_2 - c_1 b_2 + d_1 a_2.\n\\end{align*}\n
Though multiplication looks complicated, it is actually a straightforward computation if we remember that we just add and multiply elements in ${\\mathbb H}$ like polynomials and keep in mind the relationships between the generators ${\\mathbf i}\\text{,}$ ${\\mathbf j}\\text{,}$ and ${\\mathbf k}\\text{.}$ The ring ${\\mathbb H}$ is called the ring of quaternions.
To show that the quaternions are a division ring, we must be able to find an inverse for each nonzero element. Notice that
\n\\begin{equation*}\n( a + b {\\mathbf i} + c {\\mathbf j} +d {\\mathbf k} )( a - b {\\mathbf i} - c {\\mathbf j} -d {\\mathbf k} ) = a^2 + b^2 + c^2 + d^2.\n\\end{equation*}\n
This element can be zero only if $a\\text{,}$ $b\\text{,}$ $c\\text{,}$ and $d$ are all zero. So if $a + b {\\mathbf i} + c {\\mathbf j} +d {\\mathbf k} \\neq 0\\text{,}$
\n\\begin{equation*}\n( a + b {\\mathbf i} + c {\\mathbf j} +d {\\mathbf k} )\\left( \\frac{a - b {\\mathbf i} - c {\\mathbf j} - d {\\mathbf k} }{ a^2 + b^2 + c^2 + d^2 } \\right) = 1.\n\\end{equation*}\n