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1 Bases
Five “random” vectors, each with 4 entries, collected into a set S.

v1 = vector(QQ , [-4, -2, 3, -11])
v2 = vector(QQ , [-2, 7, 3, 9])
v3 = vector(QQ , [ 6, -4, -7, 5])
v4 = vector(QQ , [-1, 0, 3, -4])
v5 = vector(QQ , [-4, 5, -5, 11])
S = [v1, v2 , v3 , v4 , v5]

Consider the subspace spanned by these five vectors. We will make these
vectors the rows of a matrix and row-reduce to see a basis for the space (sub-
space, or row space, take your pick). This is an application of Theorem BRS.

A = matrix(S)
A

A.rref()

Sage does this semi-automatically, tossing zero rows for us.

W = span(S)
B = W.basis()
B

Demonstration 1 Construct a random vector, w, in this subspace by choosing
scalars for a linear combination of the vectors we used to build W as a span
originally.

Then use the three basis vectors in B to recreate the vector w. Question:
how many ways can you do this? By Theorem VRRB there should always be
exactly one way to create w using a linear combination of a basis of W.

w = *v1 + *v2 + *v3 + *v4 + *v5
w

w in W

*B[0] + *B[1] + *B[2]



2 Nonsingular Matrices
We will obtain a basis of C10 from the columns of a 10×10 nonsingular matrix.

entries = [[ 1, 1, 1, -1, -2, 4, 2, -3, 1, -6],
[-2, -1, -2, 2, 4, -7, -4, 5, -1, 7],
[ 1, -1, 2, -2, -5, 8, 5, -3, 4, -4],
[-1, -2, 0, 1, 0, -5, 0, -3, -5, 6],
[ 0, -2, 1, -1, -2, 3, 2, 3, 3, 7],
[ 1, 0, 1, -1, -2, 4, 2, 0, 2, 0],
[-1, 0, -1, 1, 3, -1, -2, 7, 5, 1],
[ 1, 1, 1, -1, -2, 8, 3, 2, 8, -6],
[ 0, 2, -1, 1, 2, -1, -2, 2, 2, -6],
[ 1, 3, 0, 0, 1, 3, 0, 0, 3, -8]]

M = matrix(QQ , entries)
M

not M.is_singular ()

A totally random vector with 10 entries:

v = random_vector(ZZ , 10, x=-9, y=9)
v

Demonstration 2 By Theorem CNMB, the columns of the matrix are a basis
of C10. So the vector v should be a linear combination of the columns of the
matrix. Verify this fact in three ways.

1. First, the old-fashioned way, thus exposing Theorem NMUS.

2. Then, the modern way, with an inverse, since a nonsingular matrix is
invertible, thus exposing Theorem SNCM.

3. Finally, the Sage way, as described below.

aug = M.augment(v)
aug.rref()

M.inverse ()*v

The Sage way: first create a space with a user basis.

X = (QQ^10).subspace_with_basis(M.columns ())
X

Sage still carries an echelonized basis, in addition to the user-installed
basis.

X.basis ()

X.echelonized_basis ()

Now ask for a coordinatization, relative to the basis in X, thus exposing
Theorem VRRB.

X.coordinates(v)
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3 Orthonormal Bases
A particularly simple orthonormal basis of C3, collected into the set S.

v1 = vector(QQ , [1/3, 2/3, 2/3])
v2 = vector(QQ , [2/3, -2/3, 1/3])
v3 = vector(QQ , [2/3, 1/3, -2/3])
S = [v1, v2 , v3]

Demonstration 3 If these vectors are an orthonormal basis, then as the
columns of a matrix they should create an orthonormal basis.

Q = column_matrix(S)
Q

Q.conjugate_transpose ()*Q

Q.is_unitary ()

Demonstration 4 Build a random vector of size 3 and find our ways to express
the vector as a (unique) linear combination of the basis vectors. Which method
is most efficient?

A totally random vector with 3 entries.

v = random_vector(ZZ , 3, x=-9, y=9)
v

First, the old-fashioned way, thus exposing Theorem NMUS.

aug = Q.augment(v)
aug.rref()

Now, the modern way, with an inverse, since a nonsingular matrix is in-
vertible, thus exposing Theorem SNCM.

Q.inverse ()*v

The Sage way. Create a space with a “user basis” and ask for a coordina-
tization, thus exposing Theorem VRRB.

X = (QQ^3).subspace_with_basis(Q.columns ())
X.coordinates(v)

Finally, exploiting the orthonormal basis, and computing scalars for the lin-
ear combination with an inner product, thus exposing Theorem COB. (Sage’s
.inner_product() does not conjugate the entries of either vector, so we use
the more careful .hermitian_inner_product() vector method instead.)

a1 = v1.hermitian_inner_product(v)
a2 = v2.hermitian_inner_product(v)
a3 = v3.hermitian_inner_product(v)
a1, a2 , a3
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