
Sage and Linear Algebra Worksheet
FCLA Section PDM

Robert Beezer
Department of Mathematics and Computer Science

University of Puget Sound

Fall 2019

1 LU Decomposition, Triangular Form
This is a topic not covered in our text. You can find a discussion in A Second
Course in Linear Algebra at http://linear.ups.edu/scla/html/index.html.

Our goal is to row-reduce a matrix with elementary matrices, track the
changes, and arrive at an expression for a square matrix A as a product of a
lower-triangular matrix, L, and an upper-triangular matrix, U , that is

A = LU

the so-called LU decomposition. I sometimes prefer to call it triangular
form.

There are no exercises in this worksheet, but instead there is a careful and
detailed exposition of using elementary matrices (row operations) to arrive at
a matrix decomposition. There are many kinds of matrix decompositions,
such as the singular value decomposition (SVD). Five or six such decom-
positions form a central part of the linear algebra canon. Again, see A Second
Course in Linear Algebra for details on these.

We decompose a 5 × 5 matrix. It is most natural to describe an LU de-
composition of a square matrix, but the decomposition can be generalized to
rectangular matrices.

A = matrix(QQ , [[-6, -10, 0, 10, 14],
[2, 3, 0, -4, -3],
[0, -2, -3, 1, 8],
[5, 6, -3, -7, -3],
[-1, 1, 6, -1, -8]])

A

Elementary matrices to “do” row operations in the first column.

actionA = elementary_matrix(QQ, 5, row1=1, row2=0,
scale =-2)*elementary_matrix(QQ, 5, row1=3, row2=0,
scale =-5)*elementary_matrix(QQ, 5, row1=4, row2=0,
scale =1)*elementary_matrix(QQ, 5, row1=0, scale =-1/6)

B = actionA*A
B

Now in second column, moving to row-echelon form (i.e. not reduced
row-echelon form).

http://linear.ups.edu/scla/html/index.html

actionB = elementary_matrix(QQ, 5, row1=2, row2=1,
scale =2)*elementary_matrix(QQ, 5, row1=3, row2=1,
scale =7/3)*elementary_matrix(QQ, 5, row1=4, row2=1,
scale =-8/3)*elementary_matrix(QQ, 5, row1=1, scale=-3)

C = actionB*B
C

The “bottom” of the third column.

actionC = elementary_matrix(QQ, 5, row1=3, row2=2,
scale =3)*elementary_matrix(QQ, 5, row1=4, row2=2,
scale =-6)*elementary_matrix(QQ, 5, row1=2, scale =-1/3)

D = actionC*C
D

And now the penultimate column.

actionD = elementary_matrix(QQ, 5, row1=4, row2=3,
scale =-2)*elementary_matrix(QQ, 5, row1=3, scale =1)

E = actionD*D
E

And done.

actionE = elementary_matrix(QQ, 5, row1=4, scale =1)
F = actionE*E
F

Clearly, F has determinant 1, since it is an upper triangular matrix with
diagonal entries equal to 1. By tracking the effect of the above manipulations
(tantamount to performing row operations) we expect that

det(A) =

(
1

−1/6

)(
1

−3

)(
1

−1/3

)(
1

1

)(
1

1

)
det(F) = −6.

Let’s check.

A.determinant ()

Yep. But it gets better. F is the product of the “action” matrices on the
left of A.

total_action = prod([actionE , actionD , actionC , actionB ,
actionA])

total_action

Notice that the elementary matrices we used are all lower triangular (be-
cause we just formed zeros below the diagonal of the original matrix as we
brought it to row-echelon form, and there were no row swaps). Hence their
product is again lower triangular. Now check that we have the correct matrix.

F == total_action * A

The “total action” matrix is a product of elementary matrices, which are
individually nonsingular. So their product is nonsingular. Futhermore, the
inverse is again lower triangular.

2

ta_inv = total_action.inverse ()
ta_inv

We reach our goal by rearranging the equality above, writing A as a product
of a lower-triangular matrix with an upper-triangular matrix.

A == ta_inv * F

Yes! So we have decomposed the original matrix (A) into the product of
a lower triangular matrix (inverse of the total action matrix) and an upper
triangular matrix with all ones on the diagonal (F, the original matrix in row-
echelon form).

A, ta_inv , F

This decomposition (the LU decomposition) can be useful for solving
systems quickly. You forward solve with L, then back solve with U .

More specifically, suppose you want to solve Ax = b for x, and you have
a decomposition A = LU . First solve the intermediate system, Ly = b for
y, which can be accomplished easily by determining the entries of y in order,
exploiting the lower triangular nature of L. This is what is meant by the term
forward solve.

With a solution for y, form the system Ux = y. You can check that a
solution, x, to this system is also a solution to the original system Ax = b.
Further, this solution can be found easily by determining the entries of x in
reverse order, exploiting the upper triangular nature of U . This is what is
meant by the term back solve.

We solve two simple systems, but only do half as many row-operations as if
we went fully to reduced row-echelon form. If you count the opertions carefully,
you will see that this is a big win, roughly reducing computation time by a
factor of half for large systems.

This work is Copyright 2016–2019 by Robert A. Beezer. It is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.

3

https://creativecommons.org/licenses/by-sa/4.0/

	LU Decomposition, Triangular Form

