︠21db7fd3-1a35-4e66-ae45-b253c1630168as︠ %auto typeset_mode(True, display=False) ︡9c7ed1b9-8903-4867-8dbf-aef5657ade82︡︡{"auto":true}︡{"done":true} ︠e5908576-6acb-45e9-994a-4e224804e10di︠ %html

Anti-de Sitter spacetime

This worksheet demonstrates a few capabilities of SageManifolds (version 0.8) in computations regarding anti-de Sitter spacetime.

It is released under the GNU General Public License version 3.

(c) Eric Gourgoulhon, Michal Bejger (2015)

The corresponding worksheet file can be downloaded from here


Spacetime manifold

We declare the anti-de Sitter spacetime (AdS) as a 4-dimensional differentiable manifold:

︡5a905f65-a3bd-4889-971d-c3b0ecf65cab︡︡{"done":true,"html":"
\n

Anti-de Sitter spacetime

\n

This worksheet demonstrates a few capabilities of SageManifolds (version 0.8) in computations regarding anti-de Sitter spacetime.

\n

It is released under the GNU General Public License version 3.

\n

(c) Eric Gourgoulhon, Michal Bejger (2015)

\n

The corresponding worksheet file can be downloaded from here

\n


\n
\n

Spacetime manifold

\n

We declare the anti-de Sitter spacetime (AdS) as a 4-dimensional differentiable manifold:

"} ︠2a633602-a77e-4e76-a426-8228f58c318es︠ M = Manifold(4, 'M', r'\mathcal{M}') print M ; M ︡5083962a-5a13-4813-bde9-ffafbfb9ea65︡︡{"stdout":"4-dimensional manifold 'M'\n","done":false}︡{"html":"
$\\mathcal{M}$
","done":false}︡{"done":true} ︠904251bd-0d18-45cd-8daa-f4de65340c96i︠ %html

We consider hyperbolic coordinates $(\tau,\rho,\theta,\phi)$ on $\mathcal{M}$. Allowing for the standard coordinate singularities at $\rho=0$, $\theta=0$ or $\theta=\pi$, these coordinates cover the entire spacetime manifold (which is topologically $\mathbb{R}^4$). If we restrict ourselves to regular coordinates (i.e. to considering only mathematically well defined charts), the hyperbolic coordinates cover only an open part of $\mathcal{M}$, which we call $\mathcal{M}_0$, on which $\rho$ spans the open interval $(0,+\infty)$, $\theta$ the open interval $(0,\pi)$ and $\phi$ the open interval $(0,2\pi)$. Therefore, we declare:

︡e2fc7a9f-431e-4309-bf63-4085792c8895︡︡{"done":true,"html":"

We consider hyperbolic coordinates $(\\tau,\\rho,\\theta,\\phi)$ on $\\mathcal{M}$. Allowing for the standard coordinate singularities at $\\rho=0$, $\\theta=0$ or $\\theta=\\pi$, these coordinates cover the entire spacetime manifold (which is topologically $\\mathbb{R}^4$). If we restrict ourselves to regular coordinates (i.e. to considering only mathematically well defined charts), the hyperbolic coordinates cover only an open part of $\\mathcal{M}$, which we call $\\mathcal{M}_0$, on which $\\rho$ spans the open interval $(0,+\\infty)$, $\\theta$ the open interval $(0,\\pi)$ and $\\phi$ the open interval $(0,2\\pi)$. Therefore, we declare:

"} ︠d21eedde-ce55-4bf8-b0ae-60c1c842b00ds︠ M0 = M.open_subset('M_0', r'\mathcal{M}_0' ) X_hyp. = M0.chart(r'ta:\tau rh:(0,+oo):\rho th:(0,pi):\theta ph:(0,2*pi):\phi') print X_hyp ; X_hyp ︡a6580d0e-938a-4c2c-be56-323be9d44d3f︡︡{"stdout":"chart (M_0, (ta, rh, th, ph))\n","done":false}︡{"html":"
$\\left(\\mathcal{M}_0,({\\tau}, {\\rho}, {\\theta}, {\\phi})\\right)$
","done":false}︡{"done":true} ︠10890d8f-5c04-493f-a645-4731b7813387i︠ %html

$\mathbb{R}^5$ as an ambient space

The AdS metric can be defined as that induced by the immersion of $\mathcal{M}$ in $\mathbb{R}^5$ equipped with a flat pseudo-Riemannian metric of signature $(-,-,+,+,+)$. We therefore introduce $\mathbb{R}^5$ as a 5-dimensional manifold covered by canonical coordinates:

︡70ed26de-2130-4dd1-92ac-e0a36d5b7ef1︡︡{"done":true,"html":"

$\\mathbb{R}^5$ as an ambient space

\n

The AdS metric can be defined as that induced by the immersion of $\\mathcal{M}$ in $\\mathbb{R}^5$ equipped with a flat pseudo-Riemannian metric of signature $(-,-,+,+,+)$. We therefore introduce $\\mathbb{R}^5$ as a 5-dimensional manifold covered by canonical coordinates:

"} ︠e1d6267d-f2e9-40e6-af65-cf0abcb3335bs︠ R5 = Manifold(5, 'R5', r'\mathbb{R}^5') X5. = R5.chart() print X5 ; X5 ︡1ef3f080-3a4f-40b8-89e5-4db789aee468︡︡{"stdout":"chart (R5, (U, V, X, Y, Z))\n","done":false}︡{"html":"
$\\left(\\mathbb{R}^5,(U, V, X, Y, Z)\\right)$
","done":false}︡{"done":true} ︠96dd1d4a-716e-400d-b746-84ebdb201584i︠ %html

The AdS immersion into $\mathbb{R}^5$ is defined as a differential mapping $\Phi$ from $\mathcal{M}$ to $\mathbb{R}^5$, by providing its expression in terms of $\mathcal{M}$'s default chart (which is X_hyp = $(\mathcal{M}_0,(\tau,\rho,\theta,\phi))$ ) and $\mathbb{R}^5$'s default chart (which is X5 = $(\mathbb{R}^5,(U,V,X,Y,Z))$ ):

︡5b500950-09bd-4fe2-83f8-90725dc4ec48︡︡{"done":true,"html":"

The AdS immersion into $\\mathbb{R}^5$ is defined as a differential mapping $\\Phi$ from $\\mathcal{M}$ to $\\mathbb{R}^5$, by providing its expression in terms of $\\mathcal{M}$'s default chart (which is X_hyp = $(\\mathcal{M}_0,(\\tau,\\rho,\\theta,\\phi))$ ) and $\\mathbb{R}^5$'s default chart (which is X5 = $(\\mathbb{R}^5,(U,V,X,Y,Z))$ ):

"} ︠8a592ea4-d47d-44d9-91ae-d64f47b45666s︠ var('b') assume(b>0) Phi = M.diff_mapping(R5, [sin(b*ta)/b * cosh(rh), cos(b*ta)/b * cosh(rh), sinh(rh)/b *sin(th)*cos(ph), sinh(rh)/b *sin(th)*sin(ph), sinh(rh)/b *cos(th)], name='Phi', latex_name=r'\Phi') print Phi ; Phi.display() ︡59e4a7ef-04e4-49cf-8c54-c289481e5af4︡︡{"html":"
$b$
","done":false}︡{"stdout":"differentiable mapping 'Phi' from the 4-dimensional manifold 'M' to the 5-dimensional manifold 'R5'\n","done":false}︡{"html":"
$\\begin{array}{llcl} \\Phi:& \\mathcal{M} & \\longrightarrow & \\mathbb{R}^5 \\\\ \\mbox{on}\\ \\mathcal{M}_0 : & \\left({\\tau}, {\\rho}, {\\theta}, {\\phi}\\right) & \\longmapsto & \\left(U, V, X, Y, Z\\right) = \\left(\\frac{\\cosh\\left({\\rho}\\right) \\sin\\left(b {\\tau}\\right)}{b}, \\frac{\\cos\\left(b {\\tau}\\right) \\cosh\\left({\\rho}\\right)}{b}, \\frac{\\cos\\left({\\phi}\\right) \\sin\\left({\\theta}\\right) \\sinh\\left({\\rho}\\right)}{b}, \\frac{\\sin\\left({\\phi}\\right) \\sin\\left({\\theta}\\right) \\sinh\\left({\\rho}\\right)}{b}, \\frac{\\cos\\left({\\theta}\\right) \\sinh\\left({\\rho}\\right)}{b}\\right) \\end{array}$
","done":false}︡{"done":true} ︠4dcbc6a8-b25b-4b86-9644-538b1c225eaei︠ %html

The constant $b$ is a scale parameter. Considering AdS metric as a solution of vacuum Einstein equation with negative cosmological constant $\Lambda$, one has $b = \sqrt{-\Lambda/3}$. 

Let us evaluate the image of a point via the mapping $\Phi$:

︡f0a274a1-25a6-4474-802d-9a0cb5165662︡︡{"done":true,"html":"

The constant $b$ is a scale parameter. Considering AdS metric as a solution of vacuum Einstein equation with negative cosmological constant $\\Lambda$, one has $b = \\sqrt{-\\Lambda/3}$. 

\n

Let us evaluate the image of a point via the mapping $\\Phi$:

"} ︠aeb10b82-131e-460c-911d-649a50bdb902s︠ p = M.point((ta, rh, th, ph), name='p') ; print p ︡e3c8f0e0-8aeb-4dc1-838e-c5153527801f︡︡{"stdout":"point 'p' on 4-dimensional manifold 'M'\n","done":false}︡{"done":true} ︠0cc1137f-62b6-477c-993b-96023f713cccs︠ p.coord() ︡c12b9e30-a267-425b-9ca0-18038a158e8e︡︡{"html":"
(${\\tau}$, ${\\rho}$, ${\\theta}$, ${\\phi}$)
","done":false}︡{"done":true} ︠28ab735c-7328-4fed-b0d8-b354af1fe754s︠ q = Phi(p) ; print q ︡6a83226d-9fe7-4c85-8801-b55550176851︡︡{"stdout":"point 'Phi(p)' on 5-dimensional manifold 'R5'","done":false}︡{"stdout":"\n","done":false}︡{"done":true} ︠494dcb19-016c-43fa-856f-87fb4023d81fs︠ q.coord() ︡bdaf7a5f-9ab1-4397-85b0-17ead6d14cc2︡︡{"html":"
($\\frac{\\cosh\\left({\\rho}\\right) \\sin\\left(b {\\tau}\\right)}{b}$, $\\frac{\\cos\\left(b {\\tau}\\right) \\cosh\\left({\\rho}\\right)}{b}$, $\\frac{\\cos\\left({\\phi}\\right) \\sin\\left({\\theta}\\right) \\sinh\\left({\\rho}\\right)}{b}$, $\\frac{\\sin\\left({\\phi}\\right) \\sin\\left({\\theta}\\right) \\sinh\\left({\\rho}\\right)}{b}$, $\\frac{\\cos\\left({\\theta}\\right) \\sinh\\left({\\rho}\\right)}{b}$)
","done":false}︡{"done":true} ︠068b60bc-20ae-4f17-8322-d0f044d0eb36i︠ %html

The image of $\mathcal{M}$ by the immersion $\Phi$ is a hyperboloid of one sheet, of equation $-U^2-V^2+X^2+Y^2+Z^2=-b^{-2}$. Indeed:

︡99a67af7-242e-4b5e-8ad3-7925178b2e50︡︡{"done":true,"html":"

The image of $\\mathcal{M}$ by the immersion $\\Phi$ is a hyperboloid of one sheet, of equation $-U^2-V^2+X^2+Y^2+Z^2=-b^{-2}$. Indeed:

"} ︠c4865d64-a781-43f0-a0dc-7696293d839ds︠ (Uq,Vq,Xq,Yq,Zq) = q.coord() s = - Uq^2 - Vq^2 + Xq^2 + Yq^2 + Zq^2 s.simplify_full() ︡ba9a7cc3-0d3a-444e-8d5a-13feed526ed9︡︡{"html":"
$-\\frac{1}{b^{2}}$
","done":false}︡{"done":true} ︠ace1fb55-e86b-4f3f-9a39-3d6d02ecc5e0i︠ %html

We may use the immersion $\Phi$ to draw the coordinate grid $(\tau,\rho)$ in terms of the coordinates $(U,V,X)$ for $\theta=\pi/2$ and $\phi=0$ (red) and $\theta=\pi/2$ and $\phi=\pi$ (green) (the brown lines are the lines $\tau={\rm const}$):

︡39b31ebf-53bf-45b8-abb3-97f89e2cfcd9︡︡{"done":true,"html":"

We may use the immersion $\\Phi$ to draw the coordinate grid $(\\tau,\\rho)$ in terms of the coordinates $(U,V,X)$ for $\\theta=\\pi/2$ and $\\phi=0$ (red) and $\\theta=\\pi/2$ and $\\phi=\\pi$ (green) (the brown lines are the lines $\\tau={\\rm const}$):

"} ︠3badfed4-1d46-45d3-af08-fe161cd77e48s︠ graph1 = X_hyp.plot(X5, mapping=Phi, ambient_coords=(V,X,U), fixed_coords={th:pi/2, ph:0}, ranges={ta:(0,2*pi), rh:(0,2)}, nb_values=9, color={ta:'red', rh:'brown'}, thickness=2, parameters={b:1}, label_axes=False) graph2 = X_hyp.plot(X5, mapping=Phi, ambient_coords=(V,X,U), fixed_coords={th:pi/2, ph:pi}, ranges={ta:(0,2*pi), rh:(0,2)}, nb_values=9, color={ta:'green', rh:'brown'}, thickness=2, parameters={b:1}, label_axes=False) show(set_axes_labels(graph1+graph2,'V','X','U'), aspect_ratio=1) ︡cfd04a31-eb20-4ca1-9657-1c854c696351︡︡{"done":false,"file":{"uuid":"4f38eed0-94dd-4cd5-82b4-be310e21c94e","filename":"4f38eed0-94dd-4cd5-82b4-be310e21c94e.sage3d"}}︡{"html":"
","done":false}︡{"done":true} ︠b5639770-b567-4a4e-a6be-58ffcf28ce79i︠ %html

Spacetime metric

First, we introduce on $\mathbb{R}^5$ the flat pseudo-Riemannian metric $h$ of signature $(-,-,+,+,+)$:

︡ecac02bd-0e14-4705-977c-a949c0b186ae︡︡{"done":true,"html":"

Spacetime metric

\n

First, we introduce on $\\mathbb{R}^5$ the flat pseudo-Riemannian metric $h$ of signature $(-,-,+,+,+)$:

"} ︠8a3b5ec3-b0dd-494c-b9aa-26016286931as︠ h = R5.metric('h') h[0,0], h[1,1], h[2,2], h[3,3], h[4,4] = -1, -1, 1, 1, 1 h.display() ︡1c178614-c8b2-4551-851f-34ca4b60da12︡︡{"html":"
$h = -\\mathrm{d} U\\otimes \\mathrm{d} U-\\mathrm{d} V\\otimes \\mathrm{d} V+\\mathrm{d} X\\otimes \\mathrm{d} X+\\mathrm{d} Y\\otimes \\mathrm{d} Y+\\mathrm{d} Z\\otimes \\mathrm{d} Z$
","done":false}︡{"done":true} ︠e1f758ca-7834-43ce-85f4-a81ea5a6bc4di︠ %html

As mentionned above, the AdS metric $g$ on $\mathcal{M}$ is that induced by $h$, i.e.$g$ is the pullback of $h$ by the mapping $\Phi$:

︡ed4b8e15-88b4-46ba-a93c-4bfea38c4c97︡︡{"done":true,"html":"

As mentionned above, the AdS metric $g$ on $\\mathcal{M}$ is that induced by $h$, i.e.$g$ is the pullback of $h$ by the mapping $\\Phi$:

"} ︠c5f26bed-9f06-4b61-ba7c-bc9a35acd29cs︠ g = M.metric('g') g.set( Phi.pullback(h) ) ︡15202338-535a-4844-860a-64e73b2e74fc︡︡{"done":true} ︠c486f9e2-5fd7-4677-a0fa-1b795d4029b8i︠ %html

The expression of $g$ in terms of $\mathcal{M}$'s default frame is found to be

︡545ef86b-4fed-4376-b1e0-5adb78c03f0d︡︡{"done":true,"html":"

The expression of $g$ in terms of $\\mathcal{M}$'s default frame is found to be

"} ︠7247c07a-a7b8-473d-9690-adcb3e66ae0as︠ g.display() ︡822f7fb0-fcc6-4ffa-bf3b-ad2eb4f4d616︡︡{"html":"
$g = -\\cosh\\left({\\rho}\\right)^{2} \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\tau} + \\frac{1}{b^{2}} \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\rho} + \\frac{\\sinh\\left({\\rho}\\right)^{2}}{b^{2}} \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\frac{\\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2}}{b^{2}} \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠4bb88df3-d43e-4c4c-abe6-8fc64e7a32e1s︠ g[:] ︡98d9314c-60e3-41c5-a2ed-721cfb876efe︡︡{"html":"
$\\left(\\begin{array}{rrrr}\n-\\cosh\\left({\\rho}\\right)^{2} & 0 & 0 & 0 \\\\\n0 & \\frac{1}{b^{2}} & 0 & 0 \\\\\n0 & 0 & \\frac{\\sinh\\left({\\rho}\\right)^{2}}{b^{2}} & 0 \\\\\n0 & 0 & 0 & \\frac{\\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2}}{b^{2}}\n\\end{array}\\right)$
","done":false}︡{"done":true} ︠abbda930-6073-4d40-858e-6b70b6628588i︠ %html

Curvature

The Riemann tensor of $g$ is

︡b4222e04-49b3-4332-a146-8facff56183f︡︡{"done":true,"html":"

Curvature

\n

The Riemann tensor of $g$ is

"} ︠83537f0d-4951-4dda-9033-740d3280c668s︠ Riem = g.riemann() print Riem Riem.display() ︡812a4f44-0861-44db-a796-840309dc872e︡︡{"stdout":"tensor field 'Riem(g)' of type (1,3) on the 4-dimensional manifold 'M'\n","done":false}︡{"html":"
$\\mathrm{Riem}\\left(g\\right) = -\\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\rho}+\\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\tau} -\\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\theta} + \\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\tau} -\\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\phi} + \\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\tau} -b^{2} \\cosh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\rho} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\rho} + b^{2} \\cosh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\rho} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\tau} -\\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\rho} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\theta} + \\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\rho} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\rho} -\\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\rho} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\phi} + \\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\rho} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\rho} -b^{2} \\cosh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\theta} + b^{2} \\cosh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\tau} +\\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\theta} -\\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\rho} -\\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\phi} + \\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\theta} -b^{2} \\cosh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\phi} + b^{2} \\cosh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\tau} +\\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\phi} -\\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\rho} + \\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\phi} -\\sinh\\left({\\rho}\\right)^{2} \\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\theta}$
","done":false}︡{"done":true} ︠e1729753-7dba-4239-a46f-47e824e0f7a6s︠ Riem.display_comp(only_nonredundant=True) ︡c81791a3-be7d-4300-bab9-d716f4caa961︡︡{"html":"
$\\begin{array}{lcl} \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\tau} } \\, {\\rho} \\, {\\tau} \\, {\\rho} }^{ \\, {\\tau} \\phantom{\\, {\\rho} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\rho} } } & = & -1 \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\tau} } \\, {\\theta} \\, {\\tau} \\, {\\theta} }^{ \\, {\\tau} \\phantom{\\, {\\theta} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\theta} } } & = & -\\sinh\\left({\\rho}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\tau} } \\, {\\phi} \\, {\\tau} \\, {\\phi} }^{ \\, {\\tau} \\phantom{\\, {\\phi} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\phi} } } & = & -\\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\rho} } \\, {\\tau} \\, {\\tau} \\, {\\rho} }^{ \\, {\\rho} \\phantom{\\, {\\tau} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\rho} } } & = & -b^{2} \\cosh\\left({\\rho}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\rho} } \\, {\\theta} \\, {\\rho} \\, {\\theta} }^{ \\, {\\rho} \\phantom{\\, {\\theta} } \\phantom{\\, {\\rho} } \\phantom{\\, {\\theta} } } & = & -\\sinh\\left({\\rho}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\rho} } \\, {\\phi} \\, {\\rho} \\, {\\phi} }^{ \\, {\\rho} \\phantom{\\, {\\phi} } \\phantom{\\, {\\rho} } \\phantom{\\, {\\phi} } } & = & -\\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta} } \\, {\\tau} \\, {\\tau} \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, {\\tau} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\theta} } } & = & -b^{2} \\cosh\\left({\\rho}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta} } \\, {\\rho} \\, {\\rho} \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, {\\rho} } \\phantom{\\, {\\rho} } \\phantom{\\, {\\theta} } } & = & 1 \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta} } \\, {\\phi} \\, {\\theta} \\, {\\phi} }^{ \\, {\\theta} \\phantom{\\, {\\phi} } \\phantom{\\, {\\theta} } \\phantom{\\, {\\phi} } } & = & -\\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\phi} } \\, {\\tau} \\, {\\tau} \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, {\\tau} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\phi} } } & = & -b^{2} \\cosh\\left({\\rho}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\phi} } \\, {\\rho} \\, {\\rho} \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, {\\rho} } \\phantom{\\, {\\rho} } \\phantom{\\, {\\phi} } } & = & 1 \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\phi} } \\, {\\theta} \\, {\\theta} \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, {\\theta} } \\phantom{\\, {\\theta} } \\phantom{\\, {\\phi} } } & = & \\sinh\\left({\\rho}\\right)^{2} \\end{array}$
","done":false}︡{"done":true} ︠10832dd7-d3c1-4da9-bab4-1f7a0e201536i︠ %html

The Ricci tensor:

︡e0917f8e-a4da-4d51-a410-2cea9cd26a25︡︡{"done":true,"html":"

The Ricci tensor:

"} ︠e9cdb083-6903-420e-84ef-6c2b6eea71d8s︠ Ric = g.ricci() print Ric Ric.display() ︡985fee6a-ddef-4ce7-a62f-0fa33328df6c︡︡{"stdout":"field of symmetric bilinear forms 'Ric(g)' on the 4-dimensional manifold 'M'\n","done":false}︡{"html":"
$\\mathrm{Ric}\\left(g\\right) = 3 \\, b^{2} \\cosh\\left({\\rho}\\right)^{2} \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\tau} -3 \\mathrm{d} {\\rho}\\otimes \\mathrm{d} {\\rho} -3 \\, \\sinh\\left({\\rho}\\right)^{2} \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} -3 \\, \\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2} \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠96532318-7806-4113-80b0-3efb05e3aacfs︠ Ric[:] ︡ea914229-73b4-4dc8-a626-e8ebc266e01d︡︡{"html":"
$\\left(\\begin{array}{rrrr}\n3 \\, b^{2} \\cosh\\left({\\rho}\\right)^{2} & 0 & 0 & 0 \\\\\n0 & -3 & 0 & 0 \\\\\n0 & 0 & -3 \\, \\sinh\\left({\\rho}\\right)^{2} & 0 \\\\\n0 & 0 & 0 & -3 \\, \\sin\\left({\\theta}\\right)^{2} \\sinh\\left({\\rho}\\right)^{2}\n\\end{array}\\right)$
","done":false}︡{"done":true} ︠f6ef9082-6544-45f4-8222-d59b6b2abf3fi︠ %html

The Ricci scalar:

︡59536501-aff2-433b-9420-d8f238259a76︡︡{"done":true,"html":"

The Ricci scalar:

"} ︠834781c5-1b1e-458a-bd94-cdd172bdf9b5s︠ R = g.ricci_scalar() print R R.display() ︡cd527551-3a3a-4cf9-af8a-1e9866700469︡︡{"stdout":"scalar field 'r(g)' on the 4-dimensional manifold 'M'\n","done":false}︡{"html":"
$\\begin{array}{llcl} \\mathrm{r}\\left(g\\right):& \\mathcal{M} & \\longrightarrow & \\mathbb{R} \\\\ \\mbox{on}\\ \\mathcal{M}_0 : & \\left({\\tau}, {\\rho}, {\\theta}, {\\phi}\\right) & \\longmapsto & -12 \\, b^{2} \\end{array}$
","done":false}︡{"done":true} ︠5a85fb05-fd0b-4603-8267-e2c1e584c587i︠ %html

We recover the fact that AdS spacetime has a constant curvature. It is indeed a maximally symmetric space. In particular, the Riemann tensor is expressible as

\[ R^i_{\ \, jlk} = \frac{R}{n(n-1)} \left( \delta^i_{\ \, k} g_{jl} - \delta^i_{\ \, l} g_{jk} \right) \]

where $n$ is the dimension of $\mathcal{M}$: $n=4$ in the present case. Let us check this formula here, under the form $R^i_{\ \, jlk} = -\frac{R}{6} g_{j[k} \delta^i_{\ \, l]}$:

︡bc6922c8-6cbc-469e-8fd2-86fa017c1d32︡︡{"done":true,"html":"

We recover the fact that AdS spacetime has a constant curvature. It is indeed a maximally symmetric space. In particular, the Riemann tensor is expressible as

\n

\\[ R^i_{\\ \\, jlk} = \\frac{R}{n(n-1)} \\left( \\delta^i_{\\ \\, k} g_{jl} - \\delta^i_{\\ \\, l} g_{jk} \\right) \\]

\n

where $n$ is the dimension of $\\mathcal{M}$: $n=4$ in the present case. Let us check this formula here, under the form $R^i_{\\ \\, jlk} = -\\frac{R}{6} g_{j[k} \\delta^i_{\\ \\, l]}$:

"} ︠6598f855-0628-4bbd-badf-bdc433de081cs︠ delta = M.tangent_identity_field() Riem == - (R/6)*(g*delta).antisymmetrize(2,3) # 2,3 = last positions of the type-(1,3) tensor g*delta ︡d15f4c98-b08b-41e1-90df-2e86187fae5a︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠a7406f80-0f4d-44ef-bac1-0bba0c7c0361i︠ %html

We may also check that AdS metric is a solution of the vacuum Einstein equation with (negative) cosmological constant:

︡dcefef53-e31d-4ab6-b21d-25cbcfb3d205︡︡{"done":true,"html":"

We may also check that AdS metric is a solution of the vacuum Einstein equation with (negative) cosmological constant:

"} ︠0c8cf710-fd36-4a3f-a183-40eca418f3eas︠ Lambda = -3*b^2 Ric - 1/2*R*g + Lambda*g == 0 ︡323adf3c-c1cf-4837-84f8-f0659ec04f57︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠ec4af8ba-e391-4a9e-a1c3-30f04a069c6ai︠ %html

Spherical coordinates

Let us introduce spherical coordinates $(\tau,r,\theta,\phi)$ on the AdS spacetime via the coordinate change \[ r = \frac{\sinh(\rho)}{b} \]

︡21439943-49d9-43c4-9825-c90d7e83cede︡︡{"done":true,"html":"

Spherical coordinates

\n

Let us introduce spherical coordinates $(\\tau,r,\\theta,\\phi)$ on the AdS spacetime via the coordinate change \\[ r = \\frac{\\sinh(\\rho)}{b} \\]

"} ︠6b7ff19b-9ebe-426e-8634-52b0abf04187s︠ X_spher. = M0.chart(r'ta:\tau r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi') print X_spher ; X_spher ︡9ce1e04d-5246-43fd-a30f-7bb0eaf4d92f︡︡{"stdout":"chart (M_0, (ta, r, th, ph))\n","done":false}︡{"html":"
$\\left(\\mathcal{M}_0,({\\tau}, r, {\\theta}, {\\phi})\\right)$
","done":false}︡{"done":true} ︠a2886bf8-1d3c-483d-b14c-1750beadca1as︠ hyp_to_spher = X_hyp.transition_map(X_spher, [ta, sinh(rh)/b, th, ph]) hyp_to_spher.display() ︡db87b88e-3c71-4423-8183-693858d89b3c︡︡{"html":"
$\\left\\{\\begin{array}{lcl} {\\tau} & = & {\\tau} \\\\ r & = & \\frac{\\sinh\\left({\\rho}\\right)}{b} \\\\ {\\theta} & = & {\\theta} \\\\ {\\phi} & = & {\\phi} \\end{array}\\right.$
","done":false}︡{"done":true} ︠8d36231e-4969-4327-8da6-bffb0ab83f1ds︠ hyp_to_spher.set_inverse(ta, asinh(b*r), th, ph) spher_to_hyp = hyp_to_spher.inverse() spher_to_hyp.display() ︡4353ad90-3ec3-403e-9c75-f0cbfd25852e︡︡{"stdout":"Check of the inverse coordinate transformation:","done":false}︡{"stdout":"\n ta == ","done":false}︡{"stdout":"ta\n rh == ","done":false}︡{"stdout":"arcsinh(sinh(rh))\n th == ","done":false}︡{"stdout":"th\n ph == ","done":false}︡{"stdout":"ph\n ta == ","done":false}︡{"stdout":"ta\n r == ","done":false}︡{"stdout":"r\n th == ","done":false}︡{"stdout":"th\n ph == ","done":false}︡{"stdout":"ph\n","done":false}︡{"html":"
$\\left\\{\\begin{array}{lcl} {\\tau} & = & {\\tau} \\\\ {\\rho} & = & {\\rm arcsinh}\\left(b r\\right) \\\\ {\\theta} & = & {\\theta} \\\\ {\\phi} & = & {\\phi} \\end{array}\\right.$
","done":false}︡{"done":true} ︠e671857b-01ca-49ba-8cd3-b01d65f5ace9i︠ %html

The expression of the metric tensor in the new coordinates is

︡fa34227f-45c4-4614-ad10-336ff2341fbc︡︡{"done":true,"html":"

The expression of the metric tensor in the new coordinates is

"} ︠8fafb558-7030-4bef-a616-e4e60dce5886s︠ g.display(X_spher.frame(), X_spher) ︡b72a4c3d-83db-4789-8462-245695c978f0︡︡{"html":"
$g = \\left( -b^{2} r^{2} - 1 \\right) \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\tau} + \\left( \\frac{1}{b^{2} r^{2} + 1} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + r^{2} \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + r^{2} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠4139bbee-89ce-4154-a017-cb488ff7a851︠