︠95a2f093-7345-4139-8fbe-5f3dccfaedd4as︠ %auto typeset_mode(True, display=False) ︡9159e58f-3a6d-4d06-bd03-7f140b267e39︡︡{"auto":true}︡{"done":true} ︠691859e5-5036-41b3-a73f-2b0022c23022i︠ %html

Kerr spacetime

This worksheet demonstrates a few capabilities of SageManifolds (version 0.8) in computations regarding Kerr spacetime.

It is released under the GNU General Public License version 3.

(c) Eric Gourgoulhon, Michal Bejger (2015)

The corresponding worksheet file can be downloaded from here.

 

Spacetime manifold

We can then declare the Kerr spacetime as a 4-dimensional diffentiable manifold:

︡c6cf52ad-c5ab-455f-968d-b2936c5d1ebe︡︡{"done":true,"html":"

Kerr spacetime

\n

This worksheet demonstrates a few capabilities of SageManifolds (version 0.8) in computations regarding Kerr spacetime.

\n

It is released under the GNU General Public License version 3.

\n

(c) Eric Gourgoulhon, Michal Bejger (2015)

\n

The corresponding worksheet file can be downloaded from here.

\n

 

\n

Spacetime manifold

\n

We can then declare the Kerr spacetime as a 4-dimensional diffentiable manifold:

"} ︠714c0482-f782-4d58-800d-1a0e289452bcs︠ M = Manifold(4, 'M', r'\mathcal{M}') ︡cb0dddc3-34ad-44c3-9f3c-91ae3fc803e5︡︡{"done":true} ︠80992182-8520-488d-8884-eb1c55f8e848i︠ %html

Let us use the standard Boyer-Lindquist coordinates on it, by first introducing the part $\mathcal{M}_0$ covered by these coordinates

︡6e92e81a-ff74-4ec8-9917-2e2c68068d65︡︡{"done":true,"html":"

Let us use the standard Boyer-Lindquist coordinates on it, by first introducing the part $\\mathcal{M}_0$ covered by these coordinates

"} ︠95b3aaaf-f19a-4638-98e4-fe11f3cdcf91s︠ M0 = M.open_subset('M0', r'\mathcal{M}_0') # BL = Boyer-Lindquist BL. = M0.chart(r't r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi') print BL ; BL ︡6e711e4a-1696-4089-a71e-b926187f4705︡︡{"stdout":"chart (M0, (t, r, th, ph))\n","done":false}︡{"html":"
$\\left(\\mathcal{M}_0,(t, r, {\\theta}, {\\phi})\\right)$
","done":false}︡{"done":true} ︠6b72aceb-7dfd-4327-bd72-63b38c10f033s︠ BL[0], BL[1] ︡46f5f3fd-08d9-4c0d-bfda-cff8f32631a5︡︡{"html":"
($t$, $r$)
","done":false}︡{"done":true} ︠2c7eee66-1494-4827-8192-bafa2f8fdaaai︠ %html

Metric tensor

The 2 parameters $m$ and $a$ of the Kerr spacetime are declared as symbolic variables:

︡7f0445a9-3aaf-490f-89b8-d4802eb06e16︡︡{"done":true,"html":"

Metric tensor

\n\n

The 2 parameters $m$ and $a$ of the Kerr spacetime are declared as symbolic variables:

"} ︠c26023db-5d35-4b9f-8312-d2342160293ds︠ var('m, a') ︡c85308cf-b408-48ba-9738-7dfeea4f204b︡︡{"html":"
($m$, $a$)
","done":false}︡{"done":true} ︠8ee4da76-05e3-4cd0-a9b0-6cbfb0790021i︠ %html

Let us introduce the spacetime metric:

︡d7a00727-9963-4ebc-a3cf-1a4e962fc7e5︡︡{"done":true,"html":"

Let us introduce the spacetime metric:

"} ︠19ca6ad8-795e-4cde-b02a-40bd91187741s︠ g = M.lorentz_metric('g') ︡bbf79090-1be4-4477-9ede-1d78277aa68f︡︡{"done":true} ︠f6273ca1-3947-47fb-9074-59b940516d11i︠ %html

The metric is set by its components in the coordinate frame associated with Boyer-Lindquist coordinates, which is the current manifold's default frame:

︡325d8c08-7013-4236-a5dd-a39ed87b03ce︡︡{"done":true,"html":"

The metric is set by its components in the coordinate frame associated with Boyer-Lindquist coordinates, which is the current manifold's default frame:

"} ︠995253f9-f068-44ed-a531-ad61b0c43e3cs︠ rho2 = r^2 + (a*cos(th))^2 Delta = r^2 -2*m*r + a^2 g[0,0] = -(1-2*m*r/rho2) g[0,3] = -2*a*m*r*sin(th)^2/rho2 g[1,1], g[2,2] = rho2/Delta, rho2 g[3,3] = (r^2+a^2+2*m*r*(a*sin(th))^2/rho2)*sin(th)^2 g.display() ︡ca304212-bb99-4906-8d97-8aada25b7289︡︡{"html":"
$g = \\left( -\\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, m r + r^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} t + \\left( -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} {\\phi} + \\left( \\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{a^{2} - 2 \\, m r + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + \\left( a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} t + \\left( \\frac{2 \\, a^{2} m r \\sin\\left({\\theta}\\right)^{4} + {\\left(a^{2} r^{2} + r^{4} + {\\left(a^{4} + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠816fb82e-8a7c-4741-a058-2caf9f15507as︠ g[:] # matrix view of all the components in the manifold's default vector frame ︡4bf77474-c672-4509-b010-46056fd4008e︡︡{"html":"
$\\left(\\begin{array}{rrrr}\n-\\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, m r + r^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & 0 & 0 & -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\\n0 & \\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{a^{2} - 2 \\, m r + r^{2}} & 0 & 0 \\\\\n0 & 0 & a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} & 0 \\\\\n-\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & 0 & 0 & \\frac{2 \\, a^{2} m r \\sin\\left({\\theta}\\right)^{4} + {\\left(a^{2} r^{2} + r^{4} + {\\left(a^{4} + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}\n\\end{array}\\right)$
","done":false}︡{"done":true} ︠4a1b005a-61fa-40c8-9c01-c4e8bde8c74as︠ g.display_comp() ︡6520c186-021a-44df-b74a-ca952f35dc13︡︡{"html":"
$\\begin{array}{lcl} g_{ \\, t \\, t }^{ \\phantom{\\, t } \\phantom{\\, t } } & = & -\\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, m r + r^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, t \\, {\\phi} }^{ \\phantom{\\, t } \\phantom{\\, {\\phi} } } & = & -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, r \\, r }^{ \\phantom{\\, r } \\phantom{\\, r } } & = & \\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{a^{2} - 2 \\, m r + r^{2}} \\\\ g_{ \\, {\\theta} \\, {\\theta} }^{ \\phantom{\\, {\\theta} } \\phantom{\\, {\\theta} } } & = & a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\\\ g_{ \\, {\\phi} \\, t }^{ \\phantom{\\, {\\phi} } \\phantom{\\, t } } & = & -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, {\\phi} \\, {\\phi} }^{ \\phantom{\\, {\\phi} } \\phantom{\\, {\\phi} } } & = & \\frac{2 \\, a^{2} m r \\sin\\left({\\theta}\\right)^{4} + {\\left(a^{2} r^{2} + r^{4} + {\\left(a^{4} + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\end{array}$
","done":false}︡{"done":true} ︠9ead7602-532f-4e60-96a6-b8e051abbdb8i︠ %html

Levi-Civita Connection

The Levi-Civita connection $\nabla$ associated with $g$:

︡2bd2dbeb-2164-44f7-b0c5-626e95a70781︡︡{"done":true,"html":"

Levi-Civita Connection

\n\n

The Levi-Civita connection $\\nabla$ associated with $g$:

"} ︠ed29ce99-9232-4f28-9ee8-39d49a963736s︠ nab = g.connection() ; print nab ︡90e6d644-a6a8-4169-8b79-69f27606cfe7︡︡{"stdout":"Levi-Civita connection 'nabla_g' associated with the Lorentzian metric 'g' on the 4-dimensional manifold 'M'","done":false}︡{"stdout":"\n","done":false}︡{"done":true} ︠61dc5a79-6b0b-4c98-ab42-c113ad83aec1i︠ %html

Let us verify that the covariant derivative of $g$ with respect to $\nabla$ vanishes identically:

︡1483cee7-78f2-49e3-ba43-28b107285934︡︡{"done":true,"html":"

Let us verify that the covariant derivative of $g$ with respect to $\\nabla$ vanishes identically:

"} ︠47c4c41c-7fef-47f8-88fb-a289a0aff358s︠ nab(g) == 0 ︡5565b856-a848-4459-b7be-e21460434c29︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠bd910cf6-bc59-4f94-bcc2-81260d782662s︠ nab(g).display() # another view of the above property ︡d7bcc856-4798-4126-a158-a4ef6aa8f95a︡︡{"html":"
$\\nabla_{g} g = 0$
","done":false}︡{"done":true} ︠f92fbc6d-4959-4745-a5e6-3c8af843fe68i︠ %html

The nonzero Christoffel symbols (skipping those that can be deduced by symmetry of the last two indices):

︡763b41a3-db73-4a51-b61f-2830e3d13222︡︡{"done":true,"html":"

The nonzero Christoffel symbols (skipping those that can be deduced by symmetry of the last two indices):

"} ︠25d93d12-2fb4-4ffc-97ae-09495079c52as︠ g.christoffel_symbols_display() ︡f05ac87c-a19e-4f44-9da0-344fb15ad19c︡︡{"html":"
$\\begin{array}{lcl} \\Gamma_{ \\phantom{\\, t } \\, t \\, r }^{ \\, t \\phantom{\\, t } \\phantom{\\, r } } & = & -\\frac{a^{4} m - m r^{4} - {\\left(a^{4} m + a^{2} m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, t } \\, t \\, {\\theta} }^{ \\, t \\phantom{\\, t } \\phantom{\\, {\\theta} } } & = & -\\frac{2 \\, a^{2} m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\\\ \\Gamma_{ \\phantom{\\, t } \\, r \\, {\\phi} }^{ \\, t \\phantom{\\, r } \\phantom{\\, {\\phi} } } & = & -\\frac{{\\left(a^{3} m r^{2} + 3 \\, a m r^{4} - {\\left(a^{5} m - a^{3} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, t } \\, {\\theta} \\, {\\phi} }^{ \\, t \\phantom{\\, {\\theta} } \\phantom{\\, {\\phi} } } & = & -\\frac{2 \\, {\\left(a^{5} m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{5} - {\\left(a^{5} m r + a^{3} m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{3}\\right)}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, t \\, t }^{ \\, r \\phantom{\\, t } \\phantom{\\, t } } & = & \\frac{a^{2} m r^{2} - 2 \\, m^{2} r^{3} + m r^{4} - {\\left(a^{4} m - 2 \\, a^{2} m^{2} r + a^{2} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, t \\, {\\phi} }^{ \\, r \\phantom{\\, t } \\phantom{\\, {\\phi} } } & = & -\\frac{{\\left(a^{3} m r^{2} - 2 \\, a m^{2} r^{3} + a m r^{4} - {\\left(a^{5} m - 2 \\, a^{3} m^{2} r + a^{3} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, r \\, r }^{ \\, r \\phantom{\\, r } \\phantom{\\, r } } & = & \\frac{a^{2} m - m r^{2} - {\\left(a^{2} m - a^{2} r\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, r \\, {\\theta} }^{ \\, r \\phantom{\\, r } \\phantom{\\, {\\theta} } } & = & -\\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, {\\theta} \\, {\\theta} }^{ \\, r \\phantom{\\, {\\theta} } \\phantom{\\, {\\theta} } } & = & -\\frac{a^{2} r - 2 \\, m r^{2} + r^{3}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, {\\phi} \\, {\\phi} }^{ \\, r \\phantom{\\, {\\phi} } \\phantom{\\, {\\phi} } } & = & \\frac{{\\left(a^{4} m r^{2} - 2 \\, a^{2} m^{2} r^{3} + a^{2} m r^{4} - {\\left(a^{6} m - 2 \\, a^{4} m^{2} r + a^{4} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{4} - {\\left(a^{2} r^{5} - 2 \\, m r^{6} + r^{7} + {\\left(a^{6} r - 2 \\, a^{4} m r^{2} + a^{4} r^{3}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{3} - 2 \\, a^{2} m r^{4} + a^{2} r^{5}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, t \\, t }^{ \\, {\\theta} \\phantom{\\, t } \\phantom{\\, t } } & = & -\\frac{2 \\, a^{2} m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, t \\, {\\phi} }^{ \\, {\\theta} \\phantom{\\, t } \\phantom{\\, {\\phi} } } & = & \\frac{2 \\, {\\left(a^{3} m r + a m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, r \\, r }^{ \\, {\\theta} \\phantom{\\, r } \\phantom{\\, r } } & = & \\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, r \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, r } \\phantom{\\, {\\theta} } } & = & \\frac{r}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, {\\theta} \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, {\\theta} } \\phantom{\\, {\\theta} } } & = & -\\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, {\\phi} \\, {\\phi} }^{ \\, {\\theta} \\phantom{\\, {\\phi} } \\phantom{\\, {\\phi} } } & = & -\\frac{{\\left({\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{5} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{3} + {\\left(2 \\, a^{4} m r + 4 \\, a^{2} m r^{3} + a^{2} r^{4} + r^{6}\\right)} \\cos\\left({\\theta}\\right)\\right)} \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi} } \\, t \\, r }^{ \\, {\\phi} \\phantom{\\, t } \\phantom{\\, r } } & = & -\\frac{a^{3} m \\cos\\left({\\theta}\\right)^{2} - a m r^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi} } \\, t \\, {\\theta} }^{ \\, {\\phi} \\phantom{\\, t } \\phantom{\\, {\\theta} } } & = & -\\frac{2 \\, a m r \\cos\\left({\\theta}\\right)}{{\\left(a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}\\right)} \\sin\\left({\\theta}\\right)} \\\\ \\Gamma_{ \\phantom{\\, {\\phi} } \\, r \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, r } \\phantom{\\, {\\phi} } } & = & -\\frac{a^{2} m r^{2} + 2 \\, m r^{4} - r^{5} + {\\left(a^{4} m - a^{4} r\\right)} \\cos\\left({\\theta}\\right)^{4} - {\\left(a^{4} m - a^{2} m r^{2} + 2 \\, a^{2} r^{3}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi} } \\, {\\theta} \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, {\\theta} } \\phantom{\\, {\\phi} } } & = & \\frac{a^{4} \\cos\\left({\\theta}\\right)^{5} - 2 \\, {\\left(a^{2} m r - a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{3} + {\\left(2 \\, a^{2} m r + r^{4}\\right)} \\cos\\left({\\theta}\\right)}{{\\left(a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}\\right)} \\sin\\left({\\theta}\\right)} \\end{array}$
","done":false}︡{"done":true} ︠3d3ed0b2-e334-4dcc-a467-bb8085fda309i︠ %html

Killing vectors

The default vector frame on the spacetime manifold is the coordinate basis associated with Boyer-Lindquist coordinates:

︡318a0b08-4112-494b-a14b-eee1f1803ab1︡︡{"done":true,"html":"

Killing vectors

\n

The default vector frame on the spacetime manifold is the coordinate basis associated with Boyer-Lindquist coordinates:

"} ︠9c76fdd7-7852-4064-a081-cf4314abf45es︠ M.default_frame() is BL.frame() ︡5e6b2097-f683-4aa2-804f-a43035ee73a5︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠c02c1d74-5d0c-40e5-9b66-a7df16b9c6fds︠ BL.frame() ︡9c9fd413-e695-4b85-8957-c61c571cb154︡︡{"html":"
$\\left(\\mathcal{M}_0 ,\\left(\\frac{\\partial}{\\partial t },\\frac{\\partial}{\\partial r },\\frac{\\partial}{\\partial {\\theta} },\\frac{\\partial}{\\partial {\\phi} }\\right)\\right)$
","done":false}︡{"done":true} ︠cbe9be80-2275-4134-aaee-ca15f3e414fbi︠ %html

Let us consider the first vector field of this frame:

︡71b97f66-bf4d-4fa5-9629-c990b8e8a56e︡︡{"done":true,"html":"

Let us consider the first vector field of this frame:

"} ︠e86a7839-10f9-48b3-84d9-93b52f8a9715s︠ xi = BL.frame()[0] ; xi ︡bf5bd358-c761-426a-aa2b-15b997a4e032︡︡{"html":"
$\\frac{\\partial}{\\partial t }$
","done":false}︡{"done":true} ︠5a75712c-750b-4a1c-8d7b-e9b981699bees︠ print xi ︡faae2d07-1a09-4e18-94bf-50c6fc828a3b︡︡{"stdout":"vector field 'd/dt' on the open subset 'M0' of the 4-dimensional manifold 'M'\n","done":false}︡{"done":true} ︠53026cbc-7bb1-47f3-a585-d82c9b34feb3i︠ %html

The 1-form associated to it by metric duality is

︡dc73cf2d-475d-4911-817e-63f26b00321e︡︡{"done":true,"html":"

The 1-form associated to it by metric duality is

"} ︠115a35a3-78c1-4864-ab64-87d1929c93b1s︠ xi_form = xi.down(g) ; xi_form.display() ︡20683da7-23b6-441c-9c58-b1797134d1b1︡︡{"html":"
$\\left( -\\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, m r + r^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t + \\left( -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠fef8c0a1-9706-4e40-bdb9-87feb54e1f84i︠ %html

Its covariant derivative is

︡68a19a45-d1e7-4389-9d14-f21c73060648︡︡{"done":true,"html":"

Its covariant derivative is

"} ︠2bea1208-1b5a-4636-86e4-3490a1e54264s︠ nab_xi = nab(xi_form) ; print nab_xi ; nab_xi.display() ︡132ae69c-593d-4396-be6b-9ea4a6f61825︡︡{"stdout":"tensor field of type (0,2) on the open subset 'M0' of the 4-dimensional manifold 'M'","done":false}︡{"stdout":"\n","done":false}︡{"html":"
$\\left( \\frac{a^{2} m \\cos\\left({\\theta}\\right)^{2} - m r^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} r + \\left( \\frac{2 \\, a^{2} m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{a^{2} m \\cos\\left({\\theta}\\right)^{2} - m r^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} t + \\left( \\frac{{\\left(a^{3} m \\cos\\left({\\theta}\\right)^{2} - a m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} {\\phi} + \\left( -\\frac{2 \\, a^{2} m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} t + \\left( \\frac{2 \\, {\\left(a^{3} m r + a m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\phi} + \\left( -\\frac{{\\left(a^{3} m \\cos\\left({\\theta}\\right)^{2} - a m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} r + \\left( -\\frac{2 \\, {\\left(a^{3} m r + a m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\theta}$
","done":false}︡{"done":true} ︠512d77f5-72bf-4d7e-ac8a-f620de860a86i︠ %html

Let us check that the Killing equation is satisfied:

︡25b41824-fee3-4dd2-bd5b-74414d1f3321︡︡{"done":true,"html":"

Let us check that the Killing equation is satisfied:

"} ︠a33c44a1-de03-4fa2-817c-b23100f3704cs︠ nab_xi.symmetrize() == 0 ︡2ef63419-c54e-46fc-bacd-abcca4f530e3︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠9efdb089-46b3-4b29-9901-cb73fbd176dci︠ %html

Similarly, let us check that $\frac{\partial}{\partial\phi}$ is a Killing vector:

︡2a10136a-29a4-4a49-bafe-5cd0fd484a78︡︡{"done":true,"html":"

Similarly, let us check that $\\frac{\\partial}{\\partial\\phi}$ is a Killing vector:

"} ︠0f3f9591-5583-467d-b684-aaa455700244s︠ chi = BL.frame()[3] ; chi ︡de453ed1-12ff-48e8-a7dc-defecd35d270︡︡{"html":"
$\\frac{\\partial}{\\partial {\\phi} }$
","done":false}︡{"done":true} ︠4a663293-f693-44c8-8809-c8efaa331cbds︠ nab(chi.down(g)).symmetrize() == 0 ︡59aa50a3-89d8-4148-ac48-19be25a9fbcb︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠b56ed727-09a2-4ace-8aa6-ecca911908e7i︠ %html

Curvature

The Ricci tensor associated with $g$:

︡2a7f1119-cad2-4740-b6bc-08450aa5fbed︡︡{"done":true,"html":"

Curvature

\n\n

The Ricci tensor associated with $g$:

"} ︠f811d760-cfa9-42f8-8ff3-6bce8d9cc455s︠ Ric = g.ricci() ; print Ric ︡ab7d0115-552c-4350-b775-0be56671c5d1︡︡{"stdout":"field of symmetric bilinear forms 'Ric(g)' on the 4-dimensional manifold 'M'","done":false}︡{"stdout":"\n","done":false}︡{"done":true} ︠5dc12179-8d2d-4c67-9581-10be087dee65i︠ %html

Let us check that Kerr metric is a solution of the vacuum Einstein equation:

︡bff71e14-4846-4b72-a7fb-4299f0eb0b46︡︡{"done":true,"html":"

Let us check that Kerr metric is a solution of the vacuum Einstein equation:

"} ︠e995132a-3a6d-4bc2-b54c-2560325e4e18s︠ Ric == 0 ︡dc0399a2-0a27-41e1-a8b9-5d2ff2b835e9︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠10d786b3-49c8-406d-889b-1f2afd89a0bes︠ Ric.display() # another view of the above property ︡9050ae5f-ea84-4cd0-92ab-5ef74331f285︡︡{"html":"
$\\mathrm{Ric}\\left(g\\right) = 0$
","done":false}︡{"done":true} ︠4373586b-48c2-4680-bcc0-ac5a464bb210i︠ %html

The Riemann curvature tensor associated with $g$:

︡889825d8-c6f2-4d69-a094-1eae9cd28d0e︡︡{"done":true,"html":"

The Riemann curvature tensor associated with $g$:

"} ︠6c2eca03-79cd-4050-9d5b-42fad42fe8bcs︠ R = g.riemann() ; print R ︡c5ba5ca8-4af3-4c11-b55e-8a532d8d34ef︡︡{"stdout":"tensor field 'Riem(g)' of type (1,3) on the 4-dimensional manifold 'M'\n","done":false}︡{"done":true} ︠49d9019a-7ecb-496a-be3b-1ca219460240i︠ %html

Contrary to the Ricci tensor, the Riemann tensor does not vanish; for instance, the component $R^0_{\ \, 123}$ is

︡4fc3c64a-6dad-4b7f-8ca5-170eebca396d︡︡{"done":true,"html":"

Contrary to the Ricci tensor, the Riemann tensor does not vanish; for instance, the component $R^0_{\\ \\, 123}$ is

"} ︠2ce3c238-673f-4c89-952e-1a9a86cd0174s︠ R[0,1,2,3] ︡ec39ba05-7290-4d92-8b06-65babb6b400a︡︡{"html":"
$-\\frac{{\\left(a^{7} m - 2 \\, a^{5} m^{2} r + a^{5} m r^{2}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{5} + {\\left(a^{7} m + 2 \\, a^{5} m^{2} r + 6 \\, a^{5} m r^{2} - 6 \\, a^{3} m^{2} r^{3} + 5 \\, a^{3} m r^{4}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{3} - 2 \\, {\\left(a^{7} m - a^{5} m r^{2} - 5 \\, a^{3} m r^{4} - 3 \\, a m r^{6}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} r^{6} - 2 \\, m r^{7} + r^{8} + {\\left(a^{8} - 2 \\, a^{6} m r + a^{6} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{6} + 3 \\, {\\left(a^{6} r^{2} - 2 \\, a^{4} m r^{3} + a^{4} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{4} + 3 \\, {\\left(a^{4} r^{4} - 2 \\, a^{2} m r^{5} + a^{2} r^{6}\\right)} \\cos\\left({\\theta}\\right)^{2}}$
","done":false}︡{"done":true} ︠4d890582-e2a0-4d04-96ab-464b464368b6i︠ %html

Bianchi identity

Let us check the Bianchi identity $\nabla_p R^i_{\ \, j kl} + \nabla_k R^i_{\ \, jlp} + \nabla_l R^i_{\ \, jpk} = 0$:

︡f1c773ed-e348-4e8e-be16-9ae6e0b26cfa︡︡{"done":true,"html":"

Bianchi identity

\n\n

Let us check the Bianchi identity $\\nabla_p R^i_{\\ \\, j kl} + \\nabla_k R^i_{\\ \\, jlp} + \\nabla_l R^i_{\\ \\, jpk} = 0$:

"} ︠fcfd0b67-f36b-45ef-a4bc-5ba59b09fd8dr︠ DR = nab(R) ; print DR #long (takes a while) ︡9bcf5e5f-c359-43ff-80dd-014f4ab65c2d︡ ︠efe05f3b-dff3-4acd-bc38-9256a73a8ae2r︠ for i in M.irange(): for j in M.irange(): for k in M.irange(): for l in M.irange(): for p in M.irange(): print DR[i,j,k,l,p] + DR[i,j,l,p,k] + DR[i,j,p,k,l] , ︡d8762900-e4a7-4072-aa55-8b9e8419f806︡ ︠2166fd04-786a-4bfa-9bb8-ccc4626db9d3i︠ %html

If the last sign in the Bianchi identity is changed to minus, the identity does no longer hold:

︡11d02cad-90e6-421b-828a-a7118bffab4d︡︡{"done":true,"html":"

If the last sign in the Bianchi identity is changed to minus, the identity does no longer hold:

"} ︠17f16fdf-deb0-45b2-91a9-950ced020210r︠ DR[0,1,2,3,1] + DR[0,1,3,1,2] + DR[0,1,1,2,3] # should be zero (Bianchi identity) ︡99caeddf-11c7-42d8-9286-118ee82e7f47︡ ︠7c61d58b-a203-486d-ae57-621118a63b32r︠ DR[0,1,2,3,1] + DR[0,1,3,1,2] - DR[0,1,1,2,3] # note the change of the second + to - ︡36f1e986-943a-4510-bd2e-e29f0d5f1bd9︡ ︠bdb5b52c-8c84-4bae-8506-11a778826cdfi︠ %html

Kretschmann scalar

The tensor $R^\flat$, of components $R_{ijkl} = g_{ip} R^p_{\ \, jkl}$:

︡795ab2ed-9a0f-4ef7-8114-48e44796d16a︡︡{"done":true,"html":"

Kretschmann scalar

\n\n

The tensor $R^\\flat$, of components $R_{ijkl} = g_{ip} R^p_{\\ \\, jkl}$:

"} ︠9fcf131e-bced-4fd9-8418-61e38b95a045r︠ dR = R.down(g) ; print dR ︡8e915a24-203e-4b64-af08-7fbbfec2ff70︡ ︠96d38e2b-9007-435b-a10f-0fb5a2b38d34i︠ %html

The tensor $R^\sharp$, of components $R^{ijkl} = g^{jp} g^{kq} g^{lr} R^i_{\ \, pqr}$:

︡0836f6a2-d4e6-47a6-a3c1-380fb961b5d9︡︡{"done":true,"html":"

The tensor $R^\\sharp$, of components $R^{ijkl} = g^{jp} g^{kq} g^{lr} R^i_{\\ \\, pqr}$:

"} ︠5e63700f-5ae9-4f81-9aec-022633746a83r︠ uR = R.up(g) ; print uR ︡4d93db74-483d-4fcf-a247-950fdc023281︡ ︠dde45755-7f38-4f24-8a6e-74cdd7937a47i︠ %html

The Kretschmann scalar $K := R^{ijkl} R_{ijkl}$:

︡ae5fb627-9bb7-4b7a-ae72-128d373bd53b︡︡{"done":true,"html":"

The Kretschmann scalar $K := R^{ijkl} R_{ijkl}$:

"} ︠e249652d-4473-4673-b0dd-637ae750271ar︠ Kr_scalar = uR['^{ijkl}']*dR['_{ijkl}'] Kr_scalar.display() ︡c98ee23d-c741-4f28-96c2-723fee79b20c︡ ︠2518595a-29e0-49a4-8366-c4a82ff20f6ai︠ %html

A variant of this expression can be obtained by invoking the factor() method:

︡545e00e2-4956-40e8-8ccd-6ec8bd140dbe︡︡{"done":true,"html":"

A variant of this expression can be obtained by invoking the factor() method:

"} ︠2ec888ab-0478-4e25-a6bb-18384951166cr︠ Kr = Kr_scalar.function_chart() # the coordinate function representing the scalar field in the default chart Kr.factor() ︡04d97291-48a3-4c14-8175-d7569c136984︡ ︠925765e2-a074-4361-b16e-394931e3c4a3i︠ %html

As a check, we can compare Kr to the formula given by R. Conn Henry, Astrophys. J. 535, 350 (2000):

︡e137e8e0-c621-4d44-b11e-789f44d2cdbd︡︡{"done":true,"html":"

As a check, we can compare Kr to the formula given by R. Conn Henry, Astrophys. J. 535, 350 (2000):

"} ︠c1842029-6880-4af4-9551-c32fbdbf690br︠ Kr == 48*m^2*(r^6 - 15*r^4*(a*cos(th))^2 + 15*r^2*(a*cos(th))^4 - (a*cos(th))^6) / (r^2+(a*cos(th))^2)^6 ︡e83858cf-a837-46f4-a0c6-cb1b791bd128︡ ︠94db5f8b-497a-4bdb-8ae1-ba0d6705b735i︠ %html

The Schwarzschild value of the Kretschmann scalar is recovered by setting $a=0$:

︡0e649ffa-7827-4d27-aeb4-a7a9dcc065d3︡︡{"done":true,"html":"

The Schwarzschild value of the Kretschmann scalar is recovered by setting $a=0$:

"} ︠3a9e65fb-f036-45e1-95f5-4bae0efbf3car︠ Kr.expr().subs(a=0) ︡c1dde73a-01cf-465e-b762-7f7124501dfd︡ ︠9836db6a-17fe-449d-ab15-b1f38f182c19r︠ K1 = Kr.expr().subs(m=1, a=0.9) ︡9ea7292c-aad9-4137-94d0-1d7478b70b42︡ ︠4dd207a3-4b2d-4d25-87b3-476675848a0er︠ plot3d(K1, (r,1,3), (th, 0, pi)) ︡f38f0a15-a1fe-4788-b14e-6c0bf5bd6dbe︡ ︠0a3b9ba6-983d-4c1e-b9b6-e3c5b82bd57er︠ ︡4537a3e4-c70f-4edf-907f-9ba5bc89194d︡ ︠b280e491-7606-453c-aa6d-340b01963846r︠ ︡039fb7ce-a7ee-4091-8e42-618567d460d2︡ ︠e1e412fa-b8e0-4f0e-8c56-de65ced72bcer︠ ︡c7e9ffa8-db0f-4c8a-83aa-528c885a001d︡