︠1ba7bbe3-9ac5-4a5e-b651-7c174e9dd95ca︠ %auto typeset_mode(True, display=False) ︡3d54264a-4d0e-4768-9a5d-8881bbd72df5︡{"auto":true}︡ ︠ecc747fa-1ec7-49f4-b1a9-5c272fe0b439i︠ %html

3+1 Einstein equations in the $\delta=2$ Tomimatsu-Sato spacetime

This worksheet is based on SageManifolds (version 0.7) and regards the 3+1 slicing of the $\delta=2$ Tomimatsu-Sato spacetime.

It is released under the GNU General Public License version 2.

(c) Claire Somé, Eric Gourgoulhon (2015)

The worksheet file in Sage notebook format is here.

Tomimatsu-Sato spacetime

The Tomimatsu-Sato solution is an exact stationary and axisymmetric  solution of the vaccum Einstein equation, which is asymptotically flat and has a non-zero angular momentum. It has been found in 1972 by A. Tomimatsu and H. Sato [Phys. Rev. Lett. 29, 1344 (1972)], as a solution of the Ernst equation. It is actually the member $\delta=2$ of a larger family of solutions parametrized by a positive integer $\delta$ and exhibited by Tomimatsu and Sato in 1973 [Prog. Theor. Phys. 50, 95 (1973)], the member $\delta=1$ being nothing but the Kerr metric. We refer to [Manko, Prog. Theor. Phys. 127, 1057 (2012)] for a discussion of the properties of this solution. 

Spacelike hypersurface

We consider some hypersurface $\Sigma$ of a spacelike foliation $(\Sigma_t)_{t\in\mathbb{R}}$ of $\delta=2$ Tomimatsu-Sato spacetime; we declare $\Sigma_t$ as a 3-dimensional manifold:

︡1d73a92a-ba93-444a-8b92-05df03a4d85f︡︡{"done":true,"html":"

3+1 Einstein equations in the $\\delta=2$ Tomimatsu-Sato spacetime

\n

This worksheet is based on SageManifolds (version 0.7) and regards the 3+1 slicing of the $\\delta=2$ Tomimatsu-Sato spacetime.

\n

It is released under the GNU General Public License version 2.

\n

(c) Claire Somé, Eric Gourgoulhon (2015)

\n

The worksheet file in Sage notebook format is here.

\n

Tomimatsu-Sato spacetime

\n

The Tomimatsu-Sato solution is an exact stationary and axisymmetric  solution of the vaccum Einstein equation, which is asymptotically flat and has a non-zero angular momentum. It has been found in 1972 by A. Tomimatsu and H. Sato [Phys. Rev. Lett. 29, 1344 (1972)], as a solution of the Ernst equation. It is actually the member $\\delta=2$ of a larger family of solutions parametrized by a positive integer $\\delta$ and exhibited by Tomimatsu and Sato in 1973 [Prog. Theor. Phys. 50, 95 (1973)], the member $\\delta=1$ being nothing but the Kerr metric. We refer to [Manko, Prog. Theor. Phys. 127, 1057 (2012)] for a discussion of the properties of this solution. 

\n

Spacelike hypersurface

\n

We consider some hypersurface $\\Sigma$ of a spacelike foliation $(\\Sigma_t)_{t\\in\\mathbb{R}}$ of $\\delta=2$ Tomimatsu-Sato spacetime; we declare $\\Sigma_t$ as a 3-dimensional manifold:

"} ︠c09d2019-4756-4d88-99f7-4c61a030a7a8︠ Sig = Manifold(3, 'Sigma', r'\Sigma', start_index=1) ︡d1163d60-314b-4d0b-b57a-72d5bf73901c︡︡{"done":true} ︠fa28e872-892f-43ef-954a-582698f9146ci︠ %html

On $\Sigma$, we consider the prolate spheroidal coordinates $(x,y,\phi)$, with $x\in(1,+\infty)$, $y\in(-1,1)$ and $\phi\in(0,2\pi)$ :

︡b49df5fe-9b7b-4597-8306-db029171bfd5︡︡{"done":true,"html":"

On $\\Sigma$, we consider the prolate spheroidal coordinates $(x,y,\\phi)$, with $x\\in(1,+\\infty)$, $y\\in(-1,1)$ and $\\phi\\in(0,2\\pi)$ :

"} ︠782480d4-b2d0-4bfa-baa3-6413b4b67dae︠ X. = Sig.chart(r'x:(1,+oo) y:(-1,1) ph:(0,2*pi):\phi') print X ; X ︡5e635abf-fe16-41c9-929f-cd0ffb40a696︡︡{"stdout":"chart (Sigma, (x, y, ph))\n","done":false}︡{"html":"
$\\left(\\Sigma,(x, y, {\\phi})\\right)$
","done":false}︡{"done":true} ︠5d04fe5e-0c4d-4da8-b766-555791f8c93ai︠ %html

Riemannian metric on $\Sigma$

The Tomimatsu-Sato metric depens on three parameters: the integer $\delta$, the real number $p\in[0,1]$, and the total mass $m$:

︡67e5b1b5-0514-4d71-a594-f470c4b3f316︡︡{"done":true,"html":"

Riemannian metric on $\\Sigma$

\n

The Tomimatsu-Sato metric depens on three parameters: the integer $\\delta$, the real number $p\\in[0,1]$, and the total mass $m$:

"} ︠bc6db32b-224c-478b-9fea-d0f6053b83f4︠ var('d, p, m') assume(m>0) assumptions() ︡ab4b291b-76dc-496e-a5d5-bfb8f373f6d0︡︡{"html":"
($d$, $p$, $m$)
","done":false}︡{"html":"
[$\\text{\\texttt{x{ }is{ }real}}$, $x > 1$, $\\text{\\texttt{y{ }is{ }real}}$, $y > \\left(-1\\right)$, $y < 1$, $\\text{\\texttt{ph{ }is{ }real}}$, ${\\phi} > 0$, ${\\phi} < 2 \\, \\pi$, $m > 0$]
","done":false}︡{"done":true} ︠1ee9ab38-39e0-4461-a4fa-10a84f6f62cci︠ %html

We set $\delta=2$ and choose a specific value for $p=1/5$:

︡b4e671db-1216-4e9d-9c63-58105796e09d︡︡{"done":true,"html":"

We set $\\delta=2$ and choose a specific value for $p=1/5$:

"} ︠a7e08043-2016-4e0e-9d6d-e1501146593a︠ d = 2 p = 1/5 ︡f66cd1ef-78e7-424d-ab6f-3e3c1c10a86c︡︡{"done":true} ︠e400a838-0f8e-49e9-9445-c9145dc87430i︠ %html

Furthermore, without any loss of generality, we may set $m=1$ (this simply fixes some length scale):

︡966cad97-ac8d-492a-92e5-2daf5d44305f︡︡{"done":true,"html":"

Furthermore, without any loss of generality, we may set $m=1$ (this simply fixes some length scale):

"} ︠65f3245e-0a06-4896-a0ba-7afe6a4a3601︠ m = 1 ︡50d5648a-17f1-449e-8e58-c6ce11dd63c7︡︡{"done":true} ︠8b1d29a4-24a2-42b2-a998-097ebe436cffi︠ %html

The parameter $q$ is related to $p$ by $p^2+q^2=1$:

︡c76a88c7-28c1-417a-90c3-939fdbb2620c︡︡{"done":true,"html":"

The parameter $q$ is related to $p$ by $p^2+q^2=1$:

"} ︠a8854d39-954f-4627-b1f6-52baa497087f︠ q = sqrt(1-p^2) ︡2837524e-afd2-4fba-bc02-483843c0e01b︡︡{"done":true} ︠c4794685-0b5a-4ef2-ae50-6692804504e9i︠ %html

Some shortcut notations:

︡84bdd2b1-f10e-4d70-9e2e-624eec606870︡︡{"done":true,"html":"

Some shortcut notations:

"} ︠bbb2148a-72bd-4b2b-a93a-f373785976e3︠ AA2 = (p^2*(x^2-1)^2+q^2*(1-y^2)^2)^2-4*p^2*q^2*(x^2-1)*(1-y^2)*(x^2-y^2)^2 BB2 = (p^2*x^4+2*p*x^3-2*p*x+q^2*y^4-1)^2+4*q^2*y^2*(p*x^3-p*x*y^2-y^2+1)^2 CC2 = p^3*x*(1-x^2)*(2*(x^4-1)+(x^2+3)*(1-y^2))+p^2*(x^2-1)*((x^2-1)*(1-y^2)-4*x^2*(x^2-y^2))+q^2*(1-y^2)^3*(p*x+1) ︡1b7866ae-ab1a-455c-99df-ae402ce86339︡︡{"done":true} ︠13c2ff55-d9af-4164-8064-2803a05095f6i︠ %html

The Riemannian metric $\gamma$ induced by the spacetime metric $g$ on $\Sigma$:

︡77186048-eae2-4fd8-8c9c-225dbb929901︡︡{"done":true,"html":"

The Riemannian metric $\\gamma$ induced by the spacetime metric $g$ on $\\Sigma$:

"} ︠f76a01a6-1da1-4f37-ae24-9466bcbf8023︠ gam = Sig.riemann_metric('gam', latex_name=r'\gamma') gam[1,1] = m^2*BB2/(p^2*d^2*(x^2-1)*(x^2-y^2)^3) gam[2,2] = m^2*BB2/(p^2*d^2*(y^2-1)*(-x^2+y^2)^3) gam[3,3] = - m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)+4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2) gam.display() ︡d88156d9-8e90-424f-9dcc-37b9e677e273︡︡{"html":"
$\\gamma = \\left( \\frac{x^{8} + 576 \\, y^{8} + 20 \\, x^{7} + 96 \\, {\\left(x^{2} + 10 \\, x + 25\\right)} y^{6} + 100 \\, x^{6} - 20 \\, x^{5} - 48 \\, {\\left(3 \\, x^{4} + 10 \\, x^{3} + 30 \\, x + 125\\right)} y^{4} - 250 \\, x^{4} - 500 \\, x^{3} + 96 \\, {\\left(x^{6} + 10 \\, x^{3} + 25\\right)} y^{2} + 100 \\, x^{2} + 500 \\, x + 625}{100 \\, {\\left(x^{8} - {\\left(x^{2} - 1\\right)} y^{6} - x^{6} + 3 \\, {\\left(x^{4} - x^{2}\\right)} y^{4} - 3 \\, {\\left(x^{6} - x^{4}\\right)} y^{2}\\right)}} \\right) \\mathrm{d} x\\otimes \\mathrm{d} x + \\left( \\frac{x^{8} + 576 \\, y^{8} + 20 \\, x^{7} + 96 \\, {\\left(x^{2} + 10 \\, x + 25\\right)} y^{6} + 100 \\, x^{6} - 20 \\, x^{5} - 48 \\, {\\left(3 \\, x^{4} + 10 \\, x^{3} + 30 \\, x + 125\\right)} y^{4} - 250 \\, x^{4} - 500 \\, x^{3} + 96 \\, {\\left(x^{6} + 10 \\, x^{3} + 25\\right)} y^{2} + 100 \\, x^{2} + 500 \\, x + 625}{100 \\, {\\left(y^{8} - {\\left(3 \\, x^{2} + 1\\right)} y^{6} + x^{6} + 3 \\, {\\left(x^{4} + x^{2}\\right)} y^{4} - {\\left(x^{6} + 3 \\, x^{4}\\right)} y^{2}\\right)}} \\right) \\mathrm{d} y\\otimes \\mathrm{d} y + \\left( -\\frac{576 \\, {\\left(x^{2} - 1\\right)} y^{10} - x^{10} - 40 \\, x^{9} + 96 \\, {\\left(x^{4} + 20 \\, x^{3} + 168 \\, x^{2} + 980 \\, x + 2431\\right)} y^{8} - 699 \\, x^{8} - 7920 \\, x^{7} - 48 \\, {\\left(3 \\, x^{6} + 20 \\, x^{5} - x^{4} + 80 \\, x^{3} + 1273 \\, x^{2} + 7900 \\, x + 19525\\right)} y^{6} - 39450 \\, x^{6} + 960 \\, x^{5} + 48 \\, {\\left(2 \\, x^{8} + x^{6} + 60 \\, x^{5} - 3 \\, x^{4} + 1675 \\, x^{2} + 11940 \\, x + 29525\\right)} y^{4} + 39450 \\, x^{4} + 6000 \\, x^{3} + {\\left(x^{10} + 40 \\, x^{9} + 603 \\, x^{8} + 7920 \\, x^{7} + 39546 \\, x^{6} - 2880 \\, x^{5} - 39450 \\, x^{4} - 4080 \\, x^{3} - 45675 \\, x^{2} - 385000 \\, x - 953425\\right)} y^{2} + 9675 \\, x^{2} + 97000 \\, x + 240625}{100 \\, {\\left(x^{8} + 576 \\, y^{8} + 20 \\, x^{7} + 96 \\, {\\left(x^{2} + 10 \\, x + 25\\right)} y^{6} + 100 \\, x^{6} - 20 \\, x^{5} - 48 \\, {\\left(3 \\, x^{4} + 10 \\, x^{3} + 30 \\, x + 125\\right)} y^{4} - 250 \\, x^{4} - 500 \\, x^{3} + 96 \\, {\\left(x^{6} + 10 \\, x^{3} + 25\\right)} y^{2} + 100 \\, x^{2} + 500 \\, x + 625\\right)}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠86ce0065-0f22-46d1-a6db-7d205c452452i︠ %html

A matrix view of the components w.r.t. coordinates $(x,y,\phi)$:

︡a47f5e31-32e5-4392-9673-ff456f4384e6︡︡{"done":true,"html":"

A matrix view of the components w.r.t. coordinates $(x,y,\\phi)$:

"} ︠f8dedf08-235b-4ac3-adf1-27ab9edd8139︠ gam[:] ︡9dfe400e-adca-4530-8754-96acfb2bc12f︡︡{"html":"
$\\left(\\begin{array}{rrr}\n\\frac{x^{8} + 576 \\, y^{8} + 20 \\, x^{7} + 96 \\, {\\left(x^{2} + 10 \\, x + 25\\right)} y^{6} + 100 \\, x^{6} - 20 \\, x^{5} - 48 \\, {\\left(3 \\, x^{4} + 10 \\, x^{3} + 30 \\, x + 125\\right)} y^{4} - 250 \\, x^{4} - 500 \\, x^{3} + 96 \\, {\\left(x^{6} + 10 \\, x^{3} + 25\\right)} y^{2} + 100 \\, x^{2} + 500 \\, x + 625}{100 \\, {\\left(x^{8} - {\\left(x^{2} - 1\\right)} y^{6} - x^{6} + 3 \\, {\\left(x^{4} - x^{2}\\right)} y^{4} - 3 \\, {\\left(x^{6} - x^{4}\\right)} y^{2}\\right)}} & 0 & 0 \\\\\n0 & \\frac{x^{8} + 576 \\, y^{8} + 20 \\, x^{7} + 96 \\, {\\left(x^{2} + 10 \\, x + 25\\right)} y^{6} + 100 \\, x^{6} - 20 \\, x^{5} - 48 \\, {\\left(3 \\, x^{4} + 10 \\, x^{3} + 30 \\, x + 125\\right)} y^{4} - 250 \\, x^{4} - 500 \\, x^{3} + 96 \\, {\\left(x^{6} + 10 \\, x^{3} + 25\\right)} y^{2} + 100 \\, x^{2} + 500 \\, x + 625}{100 \\, {\\left(y^{8} - {\\left(3 \\, x^{2} + 1\\right)} y^{6} + x^{6} + 3 \\, {\\left(x^{4} + x^{2}\\right)} y^{4} - {\\left(x^{6} + 3 \\, x^{4}\\right)} y^{2}\\right)}} & 0 \\\\\n0 & 0 & -\\frac{576 \\, {\\left(x^{2} - 1\\right)} y^{10} - x^{10} - 40 \\, x^{9} + 96 \\, {\\left(x^{4} + 20 \\, x^{3} + 168 \\, x^{2} + 980 \\, x + 2431\\right)} y^{8} - 699 \\, x^{8} - 7920 \\, x^{7} - 48 \\, {\\left(3 \\, x^{6} + 20 \\, x^{5} - x^{4} + 80 \\, x^{3} + 1273 \\, x^{2} + 7900 \\, x + 19525\\right)} y^{6} - 39450 \\, x^{6} + 960 \\, x^{5} + 48 \\, {\\left(2 \\, x^{8} + x^{6} + 60 \\, x^{5} - 3 \\, x^{4} + 1675 \\, x^{2} + 11940 \\, x + 29525\\right)} y^{4} + 39450 \\, x^{4} + 6000 \\, x^{3} + {\\left(x^{10} + 40 \\, x^{9} + 603 \\, x^{8} + 7920 \\, x^{7} + 39546 \\, x^{6} - 2880 \\, x^{5} - 39450 \\, x^{4} - 4080 \\, x^{3} - 45675 \\, x^{2} - 385000 \\, x - 953425\\right)} y^{2} + 9675 \\, x^{2} + 97000 \\, x + 240625}{100 \\, {\\left(x^{8} + 576 \\, y^{8} + 20 \\, x^{7} + 96 \\, {\\left(x^{2} + 10 \\, x + 25\\right)} y^{6} + 100 \\, x^{6} - 20 \\, x^{5} - 48 \\, {\\left(3 \\, x^{4} + 10 \\, x^{3} + 30 \\, x + 125\\right)} y^{4} - 250 \\, x^{4} - 500 \\, x^{3} + 96 \\, {\\left(x^{6} + 10 \\, x^{3} + 25\\right)} y^{2} + 100 \\, x^{2} + 500 \\, x + 625\\right)}}\n\\end{array}\\right)$
","done":false}︡{"done":true} ︠9e3b988b-d192-4b65-b356-2d0bc702fa9ci︠ %html

Lapse function and shift vector

︡45d30744-50a4-43d7-be93-2ece8eeb976e︡︡{"done":true,"html":"

Lapse function and shift vector

"} ︠c3c1aa65-2e3f-40dc-a56e-115c6c4584f0︠ N2 = AA2/BB2 - 2*m*q*CC2*(y^2-1)/BB2*(2*m*q*CC2*(y^2-1)/(BB2*(m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)+4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2)))) N2.simplify_full() ︡b51e351a-b4ea-466f-ac4d-bff5ba1ad135︡︡{"html":"
$\\frac{x^{10} + 20 \\, x^{9} + 576 \\, {\\left(x^{2} - 1\\right)} y^{8} + 99 \\, x^{8} - 40 \\, x^{7} + 96 \\, {\\left(x^{4} + 10 \\, x^{3} + 24 \\, x^{2} - 10 \\, x - 25\\right)} y^{6} - 350 \\, x^{6} - 480 \\, x^{5} - 48 \\, {\\left(3 \\, x^{6} + 10 \\, x^{5} - 3 \\, x^{4} + 20 \\, x^{3} + 125 \\, x^{2} - 30 \\, x - 125\\right)} y^{4} + 350 \\, x^{4} + 1000 \\, x^{3} + 96 \\, {\\left(x^{8} - x^{6} + 10 \\, x^{5} - 10 \\, x^{3} + 25 \\, x^{2} - 25\\right)} y^{2} + 525 \\, x^{2} - 500 \\, x - 625}{x^{10} + 40 \\, x^{9} + 576 \\, {\\left(x^{2} - 1\\right)} y^{8} + 699 \\, x^{8} + 7920 \\, x^{7} + 96 \\, {\\left(x^{4} + 20 \\, x^{3} + 174 \\, x^{2} + 980 \\, x + 2425\\right)} y^{6} + 39450 \\, x^{6} - 960 \\, x^{5} - 48 \\, {\\left(3 \\, x^{6} + 20 \\, x^{5} - 3 \\, x^{4} + 40 \\, x^{3} + 925 \\, x^{2} + 5940 \\, x + 14675\\right)} y^{4} - 39450 \\, x^{4} - 6000 \\, x^{3} + 96 \\, {\\left(x^{8} - x^{6} + 20 \\, x^{5} - 20 \\, x^{3} + 375 \\, x^{2} + 3000 \\, x + 7425\\right)} y^{2} - 9675 \\, x^{2} - 97000 \\, x - 240625}$
","done":false}︡{"done":true} ︠06710f5e-5cce-4102-84ce-aef80b5a54af︠ N = Sig.scalar_field(sqrt(N2.simplify_full()), name='N') print N N.display() ︡1deaca59-43c7-4865-9782-bf69daa22ee8︡︡{"stdout":"scalar field 'N' on the 3-dimensional manifold 'Sigma'\n","done":false}︡{"html":"
$\\begin{array}{llcl} N:& \\Sigma & \\longrightarrow & \\mathbb{R} \\\\ & \\left(x, y, {\\phi}\\right) & \\longmapsto & \\sqrt{\\frac{x^{10} + 20 \\, x^{9} + 576 \\, {\\left(x^{2} - 1\\right)} y^{8} + 99 \\, x^{8} - 40 \\, x^{7} + 96 \\, {\\left(x^{4} + 10 \\, x^{3} + 24 \\, x^{2} - 10 \\, x - 25\\right)} y^{6} - 350 \\, x^{6} - 480 \\, x^{5} - 48 \\, {\\left(3 \\, x^{6} + 10 \\, x^{5} - 3 \\, x^{4} + 20 \\, x^{3} + 125 \\, x^{2} - 30 \\, x - 125\\right)} y^{4} + 350 \\, x^{4} + 1000 \\, x^{3} + 96 \\, {\\left(x^{8} - x^{6} + 10 \\, x^{5} - 10 \\, x^{3} + 25 \\, x^{2} - 25\\right)} y^{2} + 525 \\, x^{2} - 500 \\, x - 625}{x^{10} + 40 \\, x^{9} + 576 \\, {\\left(x^{2} - 1\\right)} y^{8} + 699 \\, x^{8} + 7920 \\, x^{7} + 96 \\, {\\left(x^{4} + 20 \\, x^{3} + 174 \\, x^{2} + 980 \\, x + 2425\\right)} y^{6} + 39450 \\, x^{6} - 960 \\, x^{5} - 48 \\, {\\left(3 \\, x^{6} + 20 \\, x^{5} - 3 \\, x^{4} + 40 \\, x^{3} + 925 \\, x^{2} + 5940 \\, x + 14675\\right)} y^{4} - 39450 \\, x^{4} - 6000 \\, x^{3} + 96 \\, {\\left(x^{8} - x^{6} + 20 \\, x^{5} - 20 \\, x^{3} + 375 \\, x^{2} + 3000 \\, x + 7425\\right)} y^{2} - 9675 \\, x^{2} - 97000 \\, x - 240625}} \\end{array}$
","done":false}︡{"done":true} ︠1387c147-c987-4ef8-8e2c-6c8d7ca2591a︠ b3 = 2*m*q*CC2*(y^2-1)/(BB2*(m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)+4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2))) b = Sig.vector_field('beta', latex_name=r'\beta') b[3] = b3.simplify_full() # unset components are zero b.display() ︡dc3b151f-cfdc-496f-9133-16b6dee2a787︡︡{"html":"
$\\beta = \\left( -\\frac{400 \\, {\\left(2 \\, \\sqrt{3} \\sqrt{2} x^{7} + 20 \\, \\sqrt{3} \\sqrt{2} x^{6} + 24 \\, {\\left(\\sqrt{3} \\sqrt{2} x + 5 \\, \\sqrt{3} \\sqrt{2}\\right)} y^{6} - \\sqrt{3} \\sqrt{2} x^{5} - 25 \\, \\sqrt{3} \\sqrt{2} x^{4} - 72 \\, {\\left(\\sqrt{3} \\sqrt{2} x + 5 \\, \\sqrt{3} \\sqrt{2}\\right)} y^{4} + 10 \\, \\sqrt{3} \\sqrt{2} x^{2} - {\\left(\\sqrt{3} \\sqrt{2} x^{5} + 15 \\, \\sqrt{3} \\sqrt{2} x^{4} + 2 \\, \\sqrt{3} \\sqrt{2} x^{3} - 10 \\, \\sqrt{3} \\sqrt{2} x^{2} - 75 \\, \\sqrt{3} \\sqrt{2} x - 365 \\, \\sqrt{3} \\sqrt{2}\\right)} y^{2} - 25 \\, \\sqrt{3} \\sqrt{2} x - 125 \\, \\sqrt{3} \\sqrt{2}\\right)}}{x^{10} + 40 \\, x^{9} + 576 \\, {\\left(x^{2} - 1\\right)} y^{8} + 699 \\, x^{8} + 7920 \\, x^{7} + 96 \\, {\\left(x^{4} + 20 \\, x^{3} + 174 \\, x^{2} + 980 \\, x + 2425\\right)} y^{6} + 39450 \\, x^{6} - 960 \\, x^{5} - 48 \\, {\\left(3 \\, x^{6} + 20 \\, x^{5} - 3 \\, x^{4} + 40 \\, x^{3} + 925 \\, x^{2} + 5940 \\, x + 14675\\right)} y^{4} - 39450 \\, x^{4} - 6000 \\, x^{3} + 96 \\, {\\left(x^{8} - x^{6} + 20 \\, x^{5} - 20 \\, x^{3} + 375 \\, x^{2} + 3000 \\, x + 7425\\right)} y^{2} - 9675 \\, x^{2} - 97000 \\, x - 240625} \\right) \\frac{\\partial}{\\partial {\\phi} }$
","done":false}︡{"done":true} ︠685ebb7e-d03e-4c9d-acd8-b61a2077e27bi︠ %html

Extrinsic curvature of $\Sigma$

We use the formula \[ K_{ij} = \frac{1}{2N} \mathcal{L}_{\beta} \gamma_{ij}, \] which is valid for any stationary spacetime:

︡f2a73e49-01a3-4e60-8f0e-8ba62b40ce61︡︡{"done":true,"html":"

Extrinsic curvature of $\\Sigma$

\n

We use the formula \\[ K_{ij} = \\frac{1}{2N} \\mathcal{L}_{\\beta} \\gamma_{ij}, \\] which is valid for any stationary spacetime:

"} ︠1145cab2-6a45-40f1-9ac2-cc1a6fabd4bb︠ K = gam.lie_der(b) / (2*N) K.set_name('K') print K ︡95816fb6-4b6a-4946-ab7b-c20f8f69212d︡︡{"stdout":"field of symmetric bilinear forms 'K' on the 3-dimensional manifold 'Sigma'\n","done":false}︡{"done":true} ︠0a70308e-8bb4-42c3-a224-ad6d1b6a028ei︠ %html

The component $K_{13} = K_{x\phi}$:

︡de006603-35a2-4e4e-8e08-e71fa1cf560e︡︡{"done":true,"html":"

The component $K_{13} = K_{x\\phi}$:

"} ︠c5e00ee7-d63c-4880-a16b-f42e87c0a025︠ K[1,3] ︡f8425bb7-179c-4c8d-b085-8878b34a340e︡︡{"html":"
$\\frac{2 \\, {\\left(6 \\, \\sqrt{3} \\sqrt{2} x^{16} - 13824 \\, {\\left(\\sqrt{3} \\sqrt{2} x^{2} + 10 \\, \\sqrt{3} \\sqrt{2} x + \\sqrt{3} \\sqrt{2}\\right)} y^{16} + 240 \\, \\sqrt{3} \\sqrt{2} x^{15} + 3793 \\, \\sqrt{3} \\sqrt{2} x^{14} - 6912 \\, {\\left(\\sqrt{3} \\sqrt{2} x^{4} + 20 \\, \\sqrt{3} \\sqrt{2} x^{3} + 150 \\, \\sqrt{3} \\sqrt{2} x^{2} + 500 \\, \\sqrt{3} \\sqrt{2} x + 817 \\, \\sqrt{3} \\sqrt{2}\\right)} y^{14} + 27650 \\, \\sqrt{3} \\sqrt{2} x^{13} + 72403 \\, \\sqrt{3} \\sqrt{2} x^{12} + 576 \\, {\\left(27 \\, \\sqrt{3} \\sqrt{2} x^{6} + 310 \\, \\sqrt{3} \\sqrt{2} x^{5} + 1033 \\, \\sqrt{3} \\sqrt{2} x^{4} + 1060 \\, \\sqrt{3} \\sqrt{2} x^{3} + 10493 \\, \\sqrt{3} \\sqrt{2} x^{2} + 44870 \\, \\sqrt{3} \\sqrt{2} x + 69503 \\, \\sqrt{3} \\sqrt{2}\\right)} y^{12} - 81820 \\, \\sqrt{3} \\sqrt{2} x^{11} - 374975 \\, \\sqrt{3} \\sqrt{2} x^{10} - 96 \\, {\\left(109 \\, \\sqrt{3} \\sqrt{2} x^{8} + 520 \\, \\sqrt{3} \\sqrt{2} x^{7} + 1504 \\, \\sqrt{3} \\sqrt{2} x^{6} + 19360 \\, \\sqrt{3} \\sqrt{2} x^{5} + 92770 \\, \\sqrt{3} \\sqrt{2} x^{4} + 157960 \\, \\sqrt{3} \\sqrt{2} x^{3} + 148264 \\, \\sqrt{3} \\sqrt{2} x^{2} + 731920 \\, \\sqrt{3} \\sqrt{2} x + 1256425 \\, \\sqrt{3} \\sqrt{2}\\right)} y^{10} - 313810 \\, \\sqrt{3} \\sqrt{2} x^{9} + 669975 \\, \\sqrt{3} \\sqrt{2} x^{8} + 24 \\, {\\left(9 \\, \\sqrt{3} \\sqrt{2} x^{10} + 250 \\, \\sqrt{3} \\sqrt{2} x^{9} + 6873 \\, \\sqrt{3} \\sqrt{2} x^{8} + 40920 \\, \\sqrt{3} \\sqrt{2} x^{7} + 63402 \\, \\sqrt{3} \\sqrt{2} x^{6} + 146220 \\, \\sqrt{3} \\sqrt{2} x^{5} + 1047426 \\, \\sqrt{3} \\sqrt{2} x^{4} + 2249400 \\, \\sqrt{3} \\sqrt{2} x^{3} + 876525 \\, \\sqrt{3} \\sqrt{2} x^{2} + 4308810 \\, \\sqrt{3} \\sqrt{2} x + 8401925 \\, \\sqrt{3} \\sqrt{2}\\right)} y^{8} + 1617000 \\, \\sqrt{3} \\sqrt{2} x^{7} + 999675 \\, \\sqrt{3} \\sqrt{2} x^{6} + 96 \\, {\\left(20 \\, \\sqrt{3} \\sqrt{2} x^{11} - 179 \\, \\sqrt{3} \\sqrt{2} x^{10} - 50 \\, \\sqrt{3} \\sqrt{2} x^{9} - 2897 \\, \\sqrt{3} \\sqrt{2} x^{8} - 28400 \\, \\sqrt{3} \\sqrt{2} x^{7} - 57446 \\, \\sqrt{3} \\sqrt{2} x^{6} - 9020 \\, \\sqrt{3} \\sqrt{2} x^{5} - 237650 \\, \\sqrt{3} \\sqrt{2} x^{4} - 731060 \\, \\sqrt{3} \\sqrt{2} x^{3} - 267175 \\, \\sqrt{3} \\sqrt{2} x^{2} - 1037250 \\, \\sqrt{3} \\sqrt{2} x - 2111325 \\, \\sqrt{3} \\sqrt{2}\\right)} y^{6} - 2277250 \\, \\sqrt{3} \\sqrt{2} x^{5} - 4979375 \\, \\sqrt{3} \\sqrt{2} x^{4} - {\\left(187 \\, \\sqrt{3} \\sqrt{2} x^{14} + 3590 \\, \\sqrt{3} \\sqrt{2} x^{13} - 5207 \\, \\sqrt{3} \\sqrt{2} x^{12} - 73540 \\, \\sqrt{3} \\sqrt{2} x^{11} - 454637 \\, \\sqrt{3} \\sqrt{2} x^{10} - 1150150 \\, \\sqrt{3} \\sqrt{2} x^{9} + 199401 \\, \\sqrt{3} \\sqrt{2} x^{8} - 1059000 \\, \\sqrt{3} \\sqrt{2} x^{7} - 7811175 \\, \\sqrt{3} \\sqrt{2} x^{6} + 2899610 \\, \\sqrt{3} \\sqrt{2} x^{5} + 1675075 \\, \\sqrt{3} \\sqrt{2} x^{4} - 32834500 \\, \\sqrt{3} \\sqrt{2} x^{3} - 24681575 \\, \\sqrt{3} \\sqrt{2} x^{2} - 69684250 \\, \\sqrt{3} \\sqrt{2} x - 122823125 \\, \\sqrt{3} \\sqrt{2}\\right)} y^{4} - 4037500 \\, \\sqrt{3} \\sqrt{2} x^{3} + 3461875 \\, \\sqrt{3} \\sqrt{2} x^{2} - 6 \\, {\\left(\\sqrt{3} \\sqrt{2} x^{16} + 40 \\, \\sqrt{3} \\sqrt{2} x^{15} + 601 \\, \\sqrt{3} \\sqrt{2} x^{14} + 4010 \\, \\sqrt{3} \\sqrt{2} x^{13} + 12935 \\, \\sqrt{3} \\sqrt{2} x^{12} - 1060 \\, \\sqrt{3} \\sqrt{2} x^{11} + 10449 \\, \\sqrt{3} \\sqrt{2} x^{10} + 139590 \\, \\sqrt{3} \\sqrt{2} x^{9} + 57825 \\, \\sqrt{3} \\sqrt{2} x^{8} + 146960 \\, \\sqrt{3} \\sqrt{2} x^{7} + 781475 \\, \\sqrt{3} \\sqrt{2} x^{6} - 702250 \\, \\sqrt{3} \\sqrt{2} x^{5} - 2108075 \\, \\sqrt{3} \\sqrt{2} x^{4} - 348500 \\, \\sqrt{3} \\sqrt{2} x^{3} + 2381875 \\, \\sqrt{3} \\sqrt{2} x^{2} + 5456250 \\, \\sqrt{3} \\sqrt{2} x + 6941250 \\, \\sqrt{3} \\sqrt{2}\\right)} y^{2} + 7231250 \\, \\sqrt{3} \\sqrt{2} x + 6109375 \\, \\sqrt{3} \\sqrt{2}\\right)} \\sqrt{x^{10} + 40 \\, x^{9} + 576 \\, {\\left(x^{2} - 1\\right)} y^{8} + 699 \\, x^{8} + 7920 \\, x^{7} + 96 \\, {\\left(x^{4} + 20 \\, x^{3} + 174 \\, x^{2} + 980 \\, x + 2425\\right)} y^{6} + 39450 \\, x^{6} - 960 \\, x^{5} - 48 \\, {\\left(3 \\, x^{6} + 20 \\, x^{5} - 3 \\, x^{4} + 40 \\, x^{3} + 925 \\, x^{2} + 5940 \\, x + 14675\\right)} y^{4} - 39450 \\, x^{4} - 6000 \\, x^{3} + 96 \\, {\\left(x^{8} - x^{6} + 20 \\, x^{5} - 20 \\, x^{3} + 375 \\, x^{2} + 3000 \\, x + 7425\\right)} y^{2} - 9675 \\, x^{2} - 97000 \\, x - 240625}}{{\\left(x^{18} + 60 \\, x^{17} + 331776 \\, {\\left(x^{2} - 1\\right)} y^{16} + 1599 \\, x^{16} + 25880 \\, x^{15} + 110592 \\, {\\left(x^{4} + 15 \\, x^{3} + 99 \\, x^{2} + 485 \\, x + 1200\\right)} y^{14} + 266700 \\, x^{14} + 1555560 \\, x^{13} - 9216 \\, {\\left(17 \\, x^{6} + 60 \\, x^{5} - 417 \\, x^{4} - 3040 \\, x^{3} - 13425 \\, x^{2} - 31020 \\, x - 16975\\right)} y^{12} + 3533300 \\, x^{12} - 4005000 \\, x^{11} + 9216 \\, {\\left(9 \\, x^{8} - 60 \\, x^{7} - 509 \\, x^{6} - 2430 \\, x^{5} - 9525 \\, x^{4} - 24260 \\, x^{3} - 71775 \\, x^{2} - 227250 \\, x - 290600\\right)} y^{10} - 17787450 \\, x^{10} - 18420000 \\, x^{9} + 5760 \\, {\\left(7 \\, x^{10} + 90 \\, x^{9} + 473 \\, x^{8} + 2460 \\, x^{7} + 10050 \\, x^{6} + 15200 \\, x^{5} + 53790 \\, x^{4} + 120900 \\, x^{3} + 198455 \\, x^{2} + 741350 \\, x + 1103625\\right)} y^{8} + 15656250 \\, x^{8} + 31485000 \\, x^{7} - 192 \\, {\\left(143 \\, x^{12} + 675 \\, x^{11} - 1043 \\, x^{10} - 7575 \\, x^{9} - 52650 \\, x^{8} - 224850 \\, x^{7} - 156150 \\, x^{6} + 1001250 \\, x^{5} + 3726075 \\, x^{4} + 6217375 \\, x^{3} + 4145625 \\, x^{2} + 19413125 \\, x + 33330000\\right)} y^{6} + 3527500 \\, x^{6} + 12975000 \\, x^{5} + 96 \\, {\\left(93 \\, x^{14} - 105 \\, x^{13} - 1693 \\, x^{12} - 13470 \\, x^{11} - 99575 \\, x^{10} - 222675 \\, x^{9} - 149025 \\, x^{8} - 1024500 \\, x^{7} - 2270025 \\, x^{6} + 2366625 \\, x^{5} + 9545625 \\, x^{4} + 11931250 \\, x^{3} + 451875 \\, x^{2} + 11346875 \\, x + 28273125\\right)} y^{4} + 80032500 \\, x^{4} + 102025000 \\, x^{3} + 192 \\, {\\left(x^{16} + 30 \\, x^{15} + 399 \\, x^{14} + 3955 \\, x^{13} + 19950 \\, x^{12} + 3765 \\, x^{11} + 19850 \\, x^{10} + 197000 \\, x^{9} + 47025 \\, x^{8} + 77000 \\, x^{7} + 646875 \\, x^{6} - 598125 \\, x^{5} - 2642500 \\, x^{4} - 2896875 \\, x^{3} + 1117500 \\, x^{2} + 1581250 \\, x - 687500\\right)} y^{2} - 78609375 \\, x^{2} - 180937500 \\, x - 150390625\\right)} \\sqrt{x^{8} + 576 \\, y^{8} + 20 \\, x^{7} + 96 \\, {\\left(x^{2} + 10 \\, x + 25\\right)} y^{6} + 100 \\, x^{6} - 20 \\, x^{5} - 48 \\, {\\left(3 \\, x^{4} + 10 \\, x^{3} + 30 \\, x + 125\\right)} y^{4} - 250 \\, x^{4} - 500 \\, x^{3} + 96 \\, {\\left(x^{6} + 10 \\, x^{3} + 25\\right)} y^{2} + 100 \\, x^{2} + 500 \\, x + 625} \\sqrt{x + 1} \\sqrt{x - 1}}$
","done":false}︡{"done":true} ︠c3cbbb29-0fbf-4b54-91df-334916b63cb6i︠ %html

The type-(1,1) tensor $K^\sharp$ of components $K^i_{\ \, j} = \gamma^{ik} K_{kj}$:

︡8d4b4231-8aad-4863-8689-b30ecea8d207︡︡{"done":true,"html":"

The type-(1,1) tensor $K^\\sharp$ of components $K^i_{\\ \\, j} = \\gamma^{ik} K_{kj}$:

"} ︠2c5071df-2577-41aa-8d5e-315f2624d126︠ Ku = K.up(gam, 0) print Ku ︡607cc46a-a2c2-458a-b25c-c0175472c95d︡︡{"stdout":"tensor field of type (1,1) on the 3-dimensional manifold 'Sigma'\n","done":false}︡{"done":true} ︠c6be4034-d4df-4e3c-9d45-cc7fbd48e60ai︠ %html

We may check that the hypersurface $\Sigma$ is maximal, i.e. that $K^k_{\ \, k} = 0$:

︡e6699a56-c256-49e9-9f6f-5cf0cece5ce1︡︡{"done":true,"html":"

We may check that the hypersurface $\\Sigma$ is maximal, i.e. that $K^k_{\\ \\, k} = 0$:

"} ︠0e480fcd-a833-4557-958f-9ed8a99ca170︠ trK = Ku.trace() print trK ︡01b0712d-40d0-4b54-b033-442b94997e22︡︡{"stdout":"scalar field on the 3-dimensional manifold 'Sigma'\n","done":false}︡{"done":true} ︠725bc1be-a91e-4eb9-b738-971f57075b12i︠ %html

Connection and curvature

Let us call $D$ the Levi-Civita connection associated with $\gamma$:

︡292c099f-2646-4efd-970e-7946c4971d4e︡︡{"done":true,"html":"

Connection and curvature

\n

Let us call $D$ the Levi-Civita connection associated with $\\gamma$:

"} ︠b79bd323-8ff2-429b-81a2-66c67368a220︠ D = gam.connection(name='D') print D ︡d14008e6-d094-4807-8f2f-f8eb0c034603︡︡{"stdout":"Levi-Civita connection 'D' associated with the Riemannian metric 'gam' on the 3-dimensional manifold 'Sigma'\n","done":false}︡{"done":true} ︠8502f48e-c0ea-45be-b768-af864a1f4f84i︠ %html

The Ricci tensor associated with $\gamma$:

︡70cd2364-7983-4271-af46-6bfe4b5c554c︡︡{"done":true,"html":"

The Ricci tensor associated with $\\gamma$:

"} ︠62c2e6b6-e30f-4304-a710-d5e22a664b71︠ Ric = gam.ricci() print Ric ︡3aa89f7b-7df6-4daa-bcc3-3a13a165cb1f︡{"stdout":"field of symmetric bilinear forms 'Ric(gam)' on the 3-dimensional manifold 'Sigma'\n","done":false}︡{"done":true}︡︡︡ ︠220b2daa-9f99-4262-9966-ab029e430f51i︠ %html

The scalar curvature $R = \gamma^{ij} R_{ij}$:

︡7179d427-a911-40d9-b541-d88d90c131e5︡︡{"done":true,"html":"

The scalar curvature $R = \\gamma^{ij} R_{ij}$:

"} ︠9cc21cde-7a34-4255-a83e-56e7383b8bd0︠ R = gam.ricci_scalar(name='R') print R ︡29d1411f-87da-42ee-99ce-b79f92afbc4c︡{"stdout":"scalar field 'R' on the 3-dimensional manifold 'Sigma'\n","done":false}︡{"done":true}︡ ︠89ff61c6-9563-4bae-be74-663f90802537i︠ %html

3+1 Einstein equations

Let us check that the vacuum 3+1 Einstein equations are satisfied.

We start by the constraint equations:

Hamiltonian constraint

Let us first evaluate the term $K_{ij} K^{ij}$:

︡347bc421-c66f-4c38-a9da-1e0819a47acb︡︡{"done":true,"html":"

3+1 Einstein equations

\n

Let us check that the vacuum 3+1 Einstein equations are satisfied.

\n

We start by the constraint equations:

\n

Hamiltonian constraint

\n

Let us first evaluate the term $K_{ij} K^{ij}$:

"} ︠ Kuu = Ku.up(gam, 1) trKK = K['_ij']*Kuu['^ij'] print trKK ︡31007f1d-e594-42e6-806a-ddd57a3f0e36︡︡ ︠26ab870c-18e9-488b-b966-0a75aaee0e93i︠ %html

The vacuum Hamiltonian constraint equation is \[R + K^2 -K_{ij} K^{ij} = 0 \]

︡11369215-1299-411b-a4bc-39511a9cb917︡︡{"done":true,"html":"

The vacuum Hamiltonian constraint equation is \\[R + K^2 -K_{ij} K^{ij} = 0 \\]

"} ︠4f8543ae-ede3-4d62-8a5a-5ce7365abbe3︠ ︠ Ham = R + trK^2 - trKK print Ham ; Ham.display() ︡42956103-0b08-4d3d-9acf-adb4ac234bd4︡{"done":false,"stde":"Eo in lines 1-1\nTaceback (most ecent call last):\n File \"/pojects/sage/sage-6.9/local/lib/python2.7/site-packages/smc_sagews/sage_seve.py\", line 905, in execute\n exec compile(block+'\\n', '', 'single') in namespace, locals\n File \"\", line 1\n ︠\n ^\nSyntaxError: invalid syntax\n"}︡{"done":true}︡ ︠7a052a2f-06d2-45a2-89c6-bf636d976684i︠ %html

Hence the Hamiltonian constraint is satisfied.

Momentum constraint

In vaccum, the momentum constraint is \[ D_j K^j_{\ \, i} - D_i K = 0 \]

︡e9a55975-9500-439d-bf7e-9eedc57dabe4︡︡{"done":true,"html":"

Hence the Hamiltonian constraint is satisfied.

\n\n

Momentum constraint

\n

In vaccum, the momentum constraint is \\[ D_j K^j_{\\ \\, i} - D_i K = 0 \\]

"} ︠c7cf1afb-9ae9-4309-bbc6-2f8a1d53f99c︠ ︠ mom = D(Ku).trace(0,2) - D(trK) print mom mom.display() ︡e41a2b86-1812-4702-9cc1-4de89ebb2191︡{"done":false,"stde":"Eo in lines 1-1\nTaceback (most ecent call last):\n File \"/pojects/sage/sage-6.9/local/lib/python2.7/site-packages/smc_sagews/sage_seve.py\", line 905, in execute\n exec compile(block+'\\n', '', 'single') in namespace, locals\n File \"\", line 1\n ︠\n ^\nSyntaxError: invalid syntax\n"}︡{"done":true}︡ ︠21166208-11ab-4fcd-950d-093b3c394055i︠ %html

Hence the momentum constraint is satisfied.

Dynamical Einstein equations

Let us first evaluate the symmetric bilinear form $k_{ij} := K_{ik} K^k_{\ \, j}$:

︡653e6b64-b574-49ef-87b8-63420ea18bf1︡︡{"done":true,"html":"

Hence the momentum constraint is satisfied.

\n\n

Dynamical Einstein equations

\n

Let us first evaluate the symmetric bilinear form $k_{ij} := K_{ik} K^k_{\\ \\, j}$:

"} ︠b32a5fa3-c8bf-4f29-a723-eaac7cfd30b8︠ KK = K['_ik']*Ku['^k_j'] print KK ︡259d5dd5-d01c-46f5-bf1b-26108dddd147︡{"stdout":"tensor field of type (0,2) on the 3-dimensional manifold 'Sigma'\n","done":false}︡{"done":true}︡ ︠d8ca0a12-82fb-4629-a325-bdcfc6d1a048︠ KK1 = KK.symmetrize() KK == KK1 ︡1913754d-ebba-4448-b9b1-dc3def41ba86︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true}︡ ︠12480b59-3beb-479e-a458-3f39f5dde60b︠ KK = KK1 print KK ︡caeaf0cc-c23f-468f-a90e-2f36b9998649︡{"stdout":"field of symmetric bilinear forms on the 3-dimensional manifold 'Sigma'\n","done":false}︡{"done":true}︡ ︠8fedf49f-0e6c-4eeb-a9c5-fb37c08a0a7bi︠ %html

In vacuum and for stationary spacetimes, the dynamical Einstein equations are \[ \mathcal{L}_\beta K_{ij} - D_i D_j N + N \left( R_{ij} + K K_{ij} - 2 K_{ik} K^k_{\ \, j}\right) = 0 \]

︡3da4b03f-52bb-422e-9941-6b146dd2f1e6︡︡{"done":true,"html":"

In vacuum and for stationary spacetimes, the dynamical Einstein equations are \\[ \\mathcal{L}_\\beta K_{ij} - D_i D_j N + N \\left( R_{ij} + K K_{ij} - 2 K_{ik} K^k_{\\ \\, j}\\right) = 0 \\]

"} ︠ dyn = K.lie_der(b) - D(D(N)) + N*( Ric + trK*K - 2*KK ) print dyn ; dyn.display() ︡a5e20a4c-b249-4623-ab7b-77bc6fdd6cd6︡︡ ︠2c871b91-5206-411a-bffb-c355d12fd539i︠ %html

Hence the dynamical Einstein equations are satisfied.

Finally we have checked that all the 3+1 Einstein equations are satisfied by the $\delta=2$ Tomimatsu-Sato solution.

︡c92c979a-42a0-4fe1-9498-b1fa032208d3︡︡{"done":true,"html":"

Hence the dynamical Einstein equations are satisfied.

\n\n

Finally we have checked that all the 3+1 Einstein equations are satisfied by the $\\delta=2$ Tomimatsu-Sato solution.

"} ︠ec06bf8f-cb2c-42bb-82cd-eecc914eb5be︠ ︡e5b8a72e-1bd1-4d07-9b60-f97074e71890︡{"done":true}︡