︠d6ee60bb-78ef-4b80-b64f-4a750284e1c9as︠ %auto typeset_mode(True, display=False) ︡52af4726-05aa-4cac-a0d7-7ea6f1c8a922︡︡{"auto":true}︡{"done":true} ︠00d9adb6-9d1a-4ab0-b9e4-b80c8e03aa44i︠ %html

de Sitter spacetime

This worksheet demonstrates a few capabilities of SageManifolds (version 0.8) in computations regarding de Sitter spacetime.

It is released under the GNU General Public License version 3.

(c) Eric Gourgoulhon, Michal Bejger (2015)

The corresponding worksheet file can be downloaded from here


Spacetime manifold

We declare the de Sitter spacetime as a 4-dimensional differentiable manifold:

︡1a79dab5-14b4-46b6-bf98-37f372689817︡︡{"done":true,"html":"
\n

de Sitter spacetime

\n

This worksheet demonstrates a few capabilities of SageManifolds (version 0.8) in computations regarding de Sitter spacetime.

\n

It is released under the GNU General Public License version 3.

\n

(c) Eric Gourgoulhon, Michal Bejger (2015)

\n

The corresponding worksheet file can be downloaded from here

\n


\n
\n

Spacetime manifold

\n

We declare the de Sitter spacetime as a 4-dimensional differentiable manifold:

"} ︠24d5fa0f-8346-40be-b1f9-d290e19c7eb7s︠ M = Manifold(4, 'M', r'\mathcal{M}') print M ; M ︡85f6bb30-509d-428e-bd30-179bddf5418b︡︡{"stdout":"4-dimensional manifold 'M'\n","done":false}︡{"html":"
$\\mathcal{M}$
","done":false}︡{"done":true} ︠7502fca3-ab19-4a0a-878a-cb917dc306c0i︠ %html

We consider hyperspherical coordinates $(\tau,\chi,\theta,\phi)$ on $\mathcal{M}$. Allowing for the standard coordinate singularities at $\chi=0$, $\chi=\pi$, $\theta=0$ or $\theta=\pi$, these coordinates cover the entire spacetime manifold (which is topologically $\mathbb{R}\times\mathbb{S}^3$). If we restrict ourselves to regular coordinates (i.e. to consider only mathematically well defined charts), the hyperspherical coordinates cover only an open part of $\mathcal{M}$, which we call $\mathcal{M}_0$, on which $\chi$ spans the open interval $(0,\pi)$, $\theta$ the open interval $(0,\pi)$ and $\phi$ the open interval $(0,2\pi)$. Therefore, we declare:

︡59173d33-0274-40c4-bb0f-e92bd7ab4c55︡︡{"done":true,"html":"

We consider hyperspherical coordinates $(\\tau,\\chi,\\theta,\\phi)$ on $\\mathcal{M}$. Allowing for the standard coordinate singularities at $\\chi=0$, $\\chi=\\pi$, $\\theta=0$ or $\\theta=\\pi$, these coordinates cover the entire spacetime manifold (which is topologically $\\mathbb{R}\\times\\mathbb{S}^3$). If we restrict ourselves to regular coordinates (i.e. to consider only mathematically well defined charts), the hyperspherical coordinates cover only an open part of $\\mathcal{M}$, which we call $\\mathcal{M}_0$, on which $\\chi$ spans the open interval $(0,\\pi)$, $\\theta$ the open interval $(0,\\pi)$ and $\\phi$ the open interval $(0,2\\pi)$. Therefore, we declare:

"} ︠f0299b37-e526-4d0c-b43c-40e69a814df5s︠ M0 = M.open_subset('M_0', r'\mathcal{M}_0') X_hyp. = M0.chart(r'ta:\tau ch:(0,pi):\chi th:(0,pi):\theta ph:(0,2*pi):\phi') print X_hyp ; X_hyp ︡a97b48ea-f28a-45c6-b1c9-1bbd5d2c78e9︡︡{"stdout":"chart (M_0, (ta, ch, th, ph))\n","done":false}︡{"html":"
$\\left(\\mathcal{M}_0,({\\tau}, {\\chi}, {\\theta}, {\\phi})\\right)$
","done":false}︡{"done":true} ︠8158c47f-4e84-43f9-8374-a938d8f5cf15i︠ %html

$\mathbb{R}^5$ as an ambient space

The de Sitter metric can be defined as that induced by the embedding of $\mathcal{M}$ into a 5-dimensional Minkowski space, i.e. $\mathbb{R}^5$ equipped with a flat Lorentzian metric. We therefore introduce $\mathbb{R}^5$ as a 5-dimensional manifold covered by canonical coordinates:

︡fca2182f-7629-4410-a727-14864325a0f7︡︡{"done":true,"html":"

$\\mathbb{R}^5$ as an ambient space

\n

The de Sitter metric can be defined as that induced by the embedding of $\\mathcal{M}$ into a 5-dimensional Minkowski space, i.e. $\\mathbb{R}^5$ equipped with a flat Lorentzian metric. We therefore introduce $\\mathbb{R}^5$ as a 5-dimensional manifold covered by canonical coordinates:

"} ︠d0b1e74d-4c91-4322-b795-80a0a7ca4195s︠ R5 = Manifold(5, 'R5', r'\mathbb{R}^5') X5. = R5.chart() print X5 ; X5 ︡91b82cf6-aba6-46ec-a4a2-8747263984fd︡︡{"stdout":"chart (R5, (T, W, X, Y, Z))\n","done":false}︡{"html":"
$\\left(\\mathbb{R}^5,(T, W, X, Y, Z)\\right)$
","done":false}︡{"done":true} ︠476d4a4c-3df5-4149-aae3-ff14e563ced4i︠ %html

The embedding of $\mathcal{M}$ into $\mathbb{R}^5$ is defined as a differential mapping $\Phi$ from $\mathcal{M}$ to $\mathbb{R}^5$, by providing its expression in terms of $\mathcal{M}$'s default chart (which is X_hyp = $(\mathcal{M}_0,(\tau,\chi,\theta,\phi))$ ) and $\mathbb{R}^5$'s default chart (which is X5 = $(\mathbb{R}^5,(T,W,X,Y,Z))$ ):

︡f221c66e-b9dc-45fc-80de-7cc4b93060e5︡︡{"done":true,"html":"

The embedding of $\\mathcal{M}$ into $\\mathbb{R}^5$ is defined as a differential mapping $\\Phi$ from $\\mathcal{M}$ to $\\mathbb{R}^5$, by providing its expression in terms of $\\mathcal{M}$'s default chart (which is X_hyp = $(\\mathcal{M}_0,(\\tau,\\chi,\\theta,\\phi))$ ) and $\\mathbb{R}^5$'s default chart (which is X5 = $(\\mathbb{R}^5,(T,W,X,Y,Z))$ ):

"} ︠fd1bf3f9-e4b2-48c7-9421-c203fc254746s︠ var('b') Phi = M.diff_mapping(R5, [sinh(b*ta)/b, cosh(b*ta)/b * cos(ch), cosh(b*ta)/b * sin(ch)*sin(th)*cos(ph), cosh(b*ta)/b * sin(ch)*sin(th)*sin(ph), cosh(b*ta)/b * sin(ch)*cos(th)], name='Phi', latex_name=r'\Phi') print Phi ; Phi.display() ︡19ad33d3-b254-4a94-8456-7fea8eb685e4︡︡{"html":"
$b$
","done":false}︡{"stdout":"differentiable mapping 'Phi' from the 4-dimensional manifold 'M' to the 5-dimensional manifold 'R5'\n","done":false}︡{"html":"
$\\begin{array}{llcl} \\Phi:& \\mathcal{M} & \\longrightarrow & \\mathbb{R}^5 \\\\ \\mbox{on}\\ \\mathcal{M}_0 : & \\left({\\tau}, {\\chi}, {\\theta}, {\\phi}\\right) & \\longmapsto & \\left(T, W, X, Y, Z\\right) = \\left(\\frac{\\sinh\\left(b {\\tau}\\right)}{b}, \\frac{\\cos\\left({\\chi}\\right) \\cosh\\left(b {\\tau}\\right)}{b}, \\frac{\\cos\\left({\\phi}\\right) \\cosh\\left(b {\\tau}\\right) \\sin\\left({\\chi}\\right) \\sin\\left({\\theta}\\right)}{b}, \\frac{\\cosh\\left(b {\\tau}\\right) \\sin\\left({\\chi}\\right) \\sin\\left({\\phi}\\right) \\sin\\left({\\theta}\\right)}{b}, \\frac{\\cos\\left({\\theta}\\right) \\cosh\\left(b {\\tau}\\right) \\sin\\left({\\chi}\\right)}{b}\\right) \\end{array}$
","done":false}︡{"done":true} ︠cd124048-d747-43a1-aa0d-381dade77282i︠ %html

The constant $b$ is a scale parameter. Considering de Sitter metric as a solution of vacuum Einstein equation with positive cosmological constant $\Lambda$, one has $b = \sqrt{\Lambda/3}$. 

Let us evaluate the image of a point via the mapping $\Phi$:

︡3b910702-3d26-4988-8552-562ed75d4786︡︡{"done":true,"html":"

The constant $b$ is a scale parameter. Considering de Sitter metric as a solution of vacuum Einstein equation with positive cosmological constant $\\Lambda$, one has $b = \\sqrt{\\Lambda/3}$. 

\n

Let us evaluate the image of a point via the mapping $\\Phi$:

"} ︠db99fc29-1ac0-4e02-a922-56c5f7380704s︠ p = M.point((ta, ch, th, ph), name='p') ; print p ︡67fda435-17c3-46a5-9440-b32c0aefd7d6︡︡{"stdout":"point 'p' on 4-dimensional manifold 'M'\n","done":false}︡{"done":true} ︠840a88f5-a4ee-4e85-978e-e2a4da3f4d88s︠ p.coord() ︡4816f7f7-7ae9-4456-80b0-3234d342f6ed︡︡{"html":"
(${\\tau}$, ${\\chi}$, ${\\theta}$, ${\\phi}$)
","done":false}︡{"done":true} ︠2f8d4db0-e835-4b81-ae50-9e13f4976c1ds︠ q = Phi(p) ; print q ︡c3c467a2-762e-4418-af08-26bc88309282︡︡{"stdout":"point 'Phi(p)' on 5-dimensional manifold 'R5'","done":false}︡{"stdout":"\n","done":false}︡{"done":true} ︠27de973c-12ce-4fbb-a313-82e5696d86d7s︠ q.coord() ︡d548809a-f7d4-4717-8d90-cfe925a65050︡︡{"html":"
($\\frac{\\sinh\\left(b {\\tau}\\right)}{b}$, $\\frac{\\cos\\left({\\chi}\\right) \\cosh\\left(b {\\tau}\\right)}{b}$, $\\frac{\\cos\\left({\\phi}\\right) \\cosh\\left(b {\\tau}\\right) \\sin\\left({\\chi}\\right) \\sin\\left({\\theta}\\right)}{b}$, $\\frac{\\cosh\\left(b {\\tau}\\right) \\sin\\left({\\chi}\\right) \\sin\\left({\\phi}\\right) \\sin\\left({\\theta}\\right)}{b}$, $\\frac{\\cos\\left({\\theta}\\right) \\cosh\\left(b {\\tau}\\right) \\sin\\left({\\chi}\\right)}{b}$)
","done":false}︡{"done":true} ︠50f172c7-6514-4d9f-be22-8708081c9d86i︠ %html

The image of $\mathcal{M}$ by $\Phi$ is a hyperboloid of one sheet, of equation $-T^2+W^2+X^2+Y^2+Z^2=b^{-2}$. Indeed:

︡169d759a-c5c2-40f9-b675-4523d50a1ce2︡︡{"done":true,"html":"

The image of $\\mathcal{M}$ by $\\Phi$ is a hyperboloid of one sheet, of equation $-T^2+W^2+X^2+Y^2+Z^2=b^{-2}$. Indeed:

"} ︠5a77bbbb-4503-4804-876a-6726eec509efs︠ (Tq,Wq,Xq,Yq,Zq) = q.coord() s = -Tq^2 + Wq^2 + Xq^2 + Yq^2 + Zq^2 s.simplify_full() ︡317e2113-669c-48cb-aadf-138c4878c917︡︡{"html":"
$\\frac{1}{b^{2}}$
","done":false}︡{"done":true} ︠a59b260d-e8a3-4b60-a85b-6d95ebc1375ai︠ %html

We may use the embedding $\Phi$ to draw the coordinate grid $(\tau,\chi)$ in terms of the coordinates $(W,X,T)$ for $\theta=\pi/2$ and $\phi=0$ (red) and $\theta=\pi/2$ and $\phi=\pi$ (green) (the brown lines are the lines $\tau={\rm const}$):

︡a7f58c7b-5e1f-47aa-af3e-2279d975a032︡︡{"done":true,"html":"

We may use the embedding $\\Phi$ to draw the coordinate grid $(\\tau,\\chi)$ in terms of the coordinates $(W,X,T)$ for $\\theta=\\pi/2$ and $\\phi=0$ (red) and $\\theta=\\pi/2$ and $\\phi=\\pi$ (green) (the brown lines are the lines $\\tau={\\rm const}$):

"} ︠c8924865-aa83-486a-ae6d-1c263d1c8c42s︠ graph1 = X_hyp.plot(X5, mapping=Phi, ambient_coords=(W,X,T), fixed_coords={th:pi/2, ph:0}, nb_values=9, color={ta:'red', ch:'brown'}, thickness=2, max_value=2, parameters={b:1}, label_axes=False) graph2 = X_hyp.plot(X5, mapping=Phi, ambient_coords=(W,X,T), fixed_coords={th:pi/2, ph:pi}, nb_values=9, color={ta:'green', ch:'brown'}, thickness=2, max_value=2, parameters={b:1}, label_axes=False) show(set_axes_labels(graph1+graph2,'W','X','T'), aspect_ratio=1) ︡3e3373c9-2c1d-42e5-9471-4e765e0afbef︡︡{"done":false,"file":{"uuid":"f97f4212-d46d-4ad8-b8f7-4979d61774e6","filename":"f97f4212-d46d-4ad8-b8f7-4979d61774e6.sage3d"}}︡{"html":"
","done":false}︡{"done":true} ︠b0c32c4b-e08c-47d9-bf00-638b410c1ef7i︠ %html

Spacetime metric

First, we introduce on $\mathbb{R}^5$ the Minkowski metric $h$:

︡46a2101e-2eb3-452a-a3c7-2e6277ec8e18︡︡{"done":true,"html":"

Spacetime metric

\n

First, we introduce on $\\mathbb{R}^5$ the Minkowski metric $h$:

"} ︠00290c1e-af84-4a35-b444-9921f139b586s︠ h = R5.lorentz_metric('h') h[0,0], h[1,1], h[2,2], h[3,3], h[4,4] = -1, 1, 1, 1, 1 h.display() ︡af70c54a-d38e-4285-882f-890adf08aa0c︡︡{"html":"
$h = -\\mathrm{d} T\\otimes \\mathrm{d} T+\\mathrm{d} W\\otimes \\mathrm{d} W+\\mathrm{d} X\\otimes \\mathrm{d} X+\\mathrm{d} Y\\otimes \\mathrm{d} Y+\\mathrm{d} Z\\otimes \\mathrm{d} Z$
","done":false}︡{"done":true} ︠03f0f86c-84ce-4e2b-8278-045a459cd8adi︠ %html

As mentioned above, the de Sitter metric $g$ on $\mathcal{M}$ is that induced by $h$, i.e.$g$ is the pullback of $h$ by the mapping $\Phi$:

︡66015e29-a443-46e0-8133-268c82b58bf5︡︡{"done":true,"html":"

As mentioned above, the de Sitter metric $g$ on $\\mathcal{M}$ is that induced by $h$, i.e.$g$ is the pullback of $h$ by the mapping $\\Phi$:

"} ︠1f2033e1-fd99-4876-91ea-3e1fb4b77cccs︠ g = M.metric('g') g.set( Phi.pullback(h) ) ︡5d3bf181-75f6-4d24-896b-327a885a0652︡︡{"done":true} ︠82611c22-c1f0-4f6f-ab01-af664add70abi︠ %html

The expression of $g$ in terms of $\mathcal{M}$'s default frame is found to be

︡11d729b4-efa3-4795-a072-228ccba36891︡︡{"done":true,"html":"

The expression of $g$ in terms of $\\mathcal{M}$'s default frame is found to be

"} ︠c075b76d-dea7-4bba-b39c-74b3e3411526s︠ g.display() ︡89f32c3a-8bd9-4a33-b1fd-1b9f6ac2dd91︡︡{"html":"
$g = -\\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\tau} + \\frac{\\cosh\\left(b {\\tau}\\right)^{2}}{b^{2}} \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\chi} + \\frac{\\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2}}{b^{2}} \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\frac{\\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2}}{b^{2}} \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠a173f763-a965-4285-bd04-93de610b0ca5s︠ g[:] ︡a1a77884-9446-4b1e-8a8b-07fdc014e1b6︡︡{"html":"
$\\left(\\begin{array}{rrrr}\n-1 & 0 & 0 & 0 \\\\\n0 & \\frac{\\cosh\\left(b {\\tau}\\right)^{2}}{b^{2}} & 0 & 0 \\\\\n0 & 0 & \\frac{\\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2}}{b^{2}} & 0 \\\\\n0 & 0 & 0 & \\frac{\\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2}}{b^{2}}\n\\end{array}\\right)$
","done":false}︡{"done":true} ︠49ef964e-9a05-424f-b7f1-d45027db3c6fi︠ %html

Curvature

The Riemann tensor of $g$ is

︡e8de7ecc-1688-4aa6-b25d-db7e096eaa46︡︡{"done":true,"html":"

Curvature

\n

The Riemann tensor of $g$ is

"} ︠58358f7f-dfb7-410b-bbc3-f6e10a948911s︠ Riem = g.riemann() print Riem Riem.display() ︡203d7e6d-6c97-4f85-8c46-e44419a1739d︡︡{"stdout":"tensor field 'Riem(g)' of type (1,3) on the 4-dimensional manifold 'M'\n","done":false}︡{"html":"
$\\mathrm{Riem}\\left(g\\right) = \\cosh\\left(b {\\tau}\\right)^{2} \\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\chi} -\\cosh\\left(b {\\tau}\\right)^{2} \\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\tau} + \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\theta} -\\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\tau} + \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2} \\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\phi} -\\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2} \\frac{\\partial}{\\partial {\\tau} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\tau} + b^{2} \\frac{\\partial}{\\partial {\\chi} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\chi} -b^{2} \\frac{\\partial}{\\partial {\\chi} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\tau} + \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\frac{\\partial}{\\partial {\\chi} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\theta} -\\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\frac{\\partial}{\\partial {\\chi} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\chi} + \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2} \\frac{\\partial}{\\partial {\\chi} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\phi} -\\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2} \\frac{\\partial}{\\partial {\\chi} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\chi} + b^{2} \\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\theta} -b^{2} \\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\tau} + \\left( -\\frac{\\sin\\left({\\chi}\\right)^{2} \\sinh\\left(b {\\tau}\\right)^{2} - \\cos\\left({\\chi}\\right)^{2} + 1}{\\sin\\left({\\chi}\\right)^{2}} \\right) \\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\theta} + \\cosh\\left(b {\\tau}\\right)^{2} \\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\chi} + \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2} \\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\phi} -\\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2} \\frac{\\partial}{\\partial {\\theta} }\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\theta} + b^{2} \\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\phi} -b^{2} \\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\tau} + \\left( -\\frac{\\sin\\left({\\chi}\\right)^{2} \\sinh\\left(b {\\tau}\\right)^{2} - \\cos\\left({\\chi}\\right)^{2} + 1}{\\sin\\left({\\chi}\\right)^{2}} \\right) \\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\phi} + \\cosh\\left(b {\\tau}\\right)^{2} \\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\chi} -\\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\phi} + \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\frac{\\partial}{\\partial {\\phi} }\\otimes \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\theta}$
","done":false}︡{"done":true} ︠406bd246-1a3b-49c1-bf02-fb09cc243708s︠ Riem.display_comp(only_nonredundant=True) ︡96f807ae-4076-47d5-9009-e1bd7f09d386︡︡{"html":"
$\\begin{array}{lcl} \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\tau} } \\, {\\chi} \\, {\\tau} \\, {\\chi} }^{ \\, {\\tau} \\phantom{\\, {\\chi} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\chi} } } & = & \\cosh\\left(b {\\tau}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\tau} } \\, {\\theta} \\, {\\tau} \\, {\\theta} }^{ \\, {\\tau} \\phantom{\\, {\\theta} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\theta} } } & = & \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\tau} } \\, {\\phi} \\, {\\tau} \\, {\\phi} }^{ \\, {\\tau} \\phantom{\\, {\\phi} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\phi} } } & = & \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\chi} } \\, {\\tau} \\, {\\tau} \\, {\\chi} }^{ \\, {\\chi} \\phantom{\\, {\\tau} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\chi} } } & = & b^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\chi} } \\, {\\theta} \\, {\\chi} \\, {\\theta} }^{ \\, {\\chi} \\phantom{\\, {\\theta} } \\phantom{\\, {\\chi} } \\phantom{\\, {\\theta} } } & = & \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\chi} } \\, {\\phi} \\, {\\chi} \\, {\\phi} }^{ \\, {\\chi} \\phantom{\\, {\\phi} } \\phantom{\\, {\\chi} } \\phantom{\\, {\\phi} } } & = & \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta} } \\, {\\tau} \\, {\\tau} \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, {\\tau} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\theta} } } & = & b^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta} } \\, {\\chi} \\, {\\chi} \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, {\\chi} } \\phantom{\\, {\\chi} } \\phantom{\\, {\\theta} } } & = & -\\frac{\\sin\\left({\\chi}\\right)^{2} \\sinh\\left(b {\\tau}\\right)^{2} - \\cos\\left({\\chi}\\right)^{2} + 1}{\\sin\\left({\\chi}\\right)^{2}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta} } \\, {\\phi} \\, {\\theta} \\, {\\phi} }^{ \\, {\\theta} \\phantom{\\, {\\phi} } \\phantom{\\, {\\theta} } \\phantom{\\, {\\phi} } } & = & \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\phi} } \\, {\\tau} \\, {\\tau} \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, {\\tau} } \\phantom{\\, {\\tau} } \\phantom{\\, {\\phi} } } & = & b^{2} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\phi} } \\, {\\chi} \\, {\\chi} \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, {\\chi} } \\phantom{\\, {\\chi} } \\phantom{\\, {\\phi} } } & = & -\\frac{\\sin\\left({\\chi}\\right)^{2} \\sinh\\left(b {\\tau}\\right)^{2} - \\cos\\left({\\chi}\\right)^{2} + 1}{\\sin\\left({\\chi}\\right)^{2}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\phi} } \\, {\\theta} \\, {\\theta} \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, {\\theta} } \\phantom{\\, {\\theta} } \\phantom{\\, {\\phi} } } & = & -\\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\end{array}$
","done":false}︡{"done":true} ︠8e6434ea-f8ab-4594-8ca4-d6751bef5b60i︠ %html

The Ricci tensor:

︡9b0779bd-c621-4774-a809-0eea8fa77737︡︡{"done":true,"html":"

The Ricci tensor:

"} ︠d2c5757d-d8b7-4412-8c18-406d3f39447bs︠ Ric = g.ricci() print Ric Ric.display() ︡97caaef6-9f5d-4e88-af8b-554d237f19f0︡︡{"stdout":"field of symmetric bilinear forms 'Ric(g)' on the 4-dimensional manifold 'M'\n","done":false}︡{"html":"
$\\mathrm{Ric}\\left(g\\right) = -3 \\, b^{2} \\mathrm{d} {\\tau}\\otimes \\mathrm{d} {\\tau} + 3 \\, \\cosh\\left(b {\\tau}\\right)^{2} \\mathrm{d} {\\chi}\\otimes \\mathrm{d} {\\chi} + 3 \\, \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + 3 \\, \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠bc5a6b52-f5f3-497c-ac5f-ef33c950cc7bs︠ Ric[:] ︡224cf78c-6e5c-42db-899d-b8a9d13b0ead︡︡{"html":"
$\\left(\\begin{array}{rrrr}\n-3 \\, b^{2} & 0 & 0 & 0 \\\\\n0 & 3 \\, \\cosh\\left(b {\\tau}\\right)^{2} & 0 & 0 \\\\\n0 & 0 & 3 \\, \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} & 0 \\\\\n0 & 0 & 0 & 3 \\, \\cosh\\left(b {\\tau}\\right)^{2} \\sin\\left({\\chi}\\right)^{2} \\sin\\left({\\theta}\\right)^{2}\n\\end{array}\\right)$
","done":false}︡{"done":true} ︠19b562b5-a7d6-4d5d-9bf4-786ee2ed8902i︠ %html

The Ricci scalar:

︡00dc28fa-4415-4526-b0dd-0fb71cc1ac8b︡︡{"done":true,"html":"

The Ricci scalar:

"} ︠6125f2a0-de34-4f20-a144-86a36f361010s︠ R = g.ricci_scalar() print R R.display() ︡272d51d7-4d0a-44a0-bde0-ce5479f29f9f︡︡{"stdout":"scalar field 'r(g)' on the 4-dimensional manifold 'M'\n","done":false}︡{"html":"
$\\begin{array}{llcl} \\mathrm{r}\\left(g\\right):& \\mathcal{M} & \\longrightarrow & \\mathbb{R} \\\\ \\mbox{on}\\ \\mathcal{M}_0 : & \\left({\\tau}, {\\chi}, {\\theta}, {\\phi}\\right) & \\longmapsto & 12 \\, b^{2} \\end{array}$
","done":false}︡{"done":true} ︠751afc30-015d-4a43-a356-28f37204f5eci︠ %html

We recover the fact that de Sitter spacetime has a constant curvature. It is indeed a maximally symmetric space. In particular, the Riemann tensor is expressible as

\[ R^i_{\ \, jlk} = \frac{R}{n(n-1)} \left( \delta^i_{\ \, k} g_{jl} - \delta^i_{\ \, l} g_{jk} \right) \]

where $n$ is the dimension of $\mathcal{M}$: $n=4$ in the present case. Let us check this formula here, under the form $R^i_{\ \, jlk} = -\frac{R}{6} g_{j[k} \delta^i_{\ \, l]}$:

︡c547389d-1313-4bfc-b621-3ac084e7f338︡︡{"done":true,"html":"

We recover the fact that de Sitter spacetime has a constant curvature. It is indeed a maximally symmetric space. In particular, the Riemann tensor is expressible as

\n

\\[ R^i_{\\ \\, jlk} = \\frac{R}{n(n-1)} \\left( \\delta^i_{\\ \\, k} g_{jl} - \\delta^i_{\\ \\, l} g_{jk} \\right) \\]

\n

where $n$ is the dimension of $\\mathcal{M}$: $n=4$ in the present case. Let us check this formula here, under the form $R^i_{\\ \\, jlk} = -\\frac{R}{6} g_{j[k} \\delta^i_{\\ \\, l]}$:

"} ︠a2ae7c4d-1e8d-4810-b9d0-1c65db56478ds︠ delta = M.tangent_identity_field() Riem == - (R/6)*(g*delta).antisymmetrize(2,3) # 2,3 = last positions of the type-(1,3) tensor g*delta ︡fce48102-e28d-4b9d-bd49-b116e28bdff6︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠3ee0796d-e092-41ff-8945-e978eec83025i︠ %html

We may also check that de Sitter metric is a solution of the vacuum Einstein equation with (positive) cosmological constant:

︡9e290803-38a7-47ba-a869-2b5004801949︡︡{"done":true,"html":"

We may also check that de Sitter metric is a solution of the vacuum Einstein equation with (positive) cosmological constant:

"} ︠66c1f5d7-c9a1-4fce-98d7-ddb66ea8800as︠ Lambda = 3*b^2 Ric - 1/2*R*g + Lambda*g == 0 ︡34bf530c-9823-409d-a5ab-7d5d367d11cd︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠fda05c87-69e8-4784-9cf8-de571462e61e︠