{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "\n", "\n", "
\n", "\n", "\n", "\n", "\n", "\n", "Abstract Algebra: An Interactive Approach, 2e\n", "
\n", "\n", "\n", "©2015 This notebook is provided with the textbook, "Abstract Algebra: An Interactive Approach, 2nd Ed." by William Paulsen. Users of this notebook are encouraged to buy the textbook.\n", "
\n", "\n", "\n", "\n", "\n",
"Chapter 2
\n",
"The Structure Within a Group\n",
"
Initialization: This cell MUST be evaluated first:
" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "%display latex\n", "try:\n", " load('absalgtext.sage')\n", "except IOError:\n", " load('/media/sf_sage/absalgtext.sage')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "{0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 0 …}
\r\n", "This tells us that, in this group Z10,\r\n", "30 = | \r\n", "0, | \r\n", "
31 = | \r\n", "3, | \r\n", "
32 = | \r\n", "3·3 = 6 | \r\n", "
33 = | \r\n", "3·3·3 = 9 | \r\n", "
34 = | \r\n", "3·3·3·3 = 2, etc. | \r\n", "
12 = 1. | \r\n", "
22 = 4, 23 = 1. | \r\n", "
32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1. | \r\n", "
42 = 2, 43 = 1. | \r\n", "
52 = 4, 53 = 6, 54 = 2, 55 = 3, 56 = 1. | \r\n", "
62 = 1 | \r\n", "
n | \r\n", "ϕ(n) | \r\n", "n | \r\n", "ϕ(n) | \r\n", "n | \r\n", "ϕ(n) | \r\n", "
---|---|---|---|---|---|
1 | \r\n", "1 | \r\n", "13 | \r\n", "12 | \r\n", "25 | \r\n", "20 | \r\n", "
2 | \r\n", "1 | \r\n", "14 | \r\n", "6 | \r\n", "26 | \r\n", "12 | \r\n", "
3 | \r\n", "2 | \r\n", "15 | \r\n", "8 | \r\n", "27 | \r\n", "18 | \r\n", "
4 | \r\n", "2 | \r\n", "16 | \r\n", "8 | \r\n", "28 | \r\n", "12 | \r\n", "
5 | \r\n", "4 | \r\n", "17 | \r\n", "16 | \r\n", "29 | \r\n", "28 | \r\n", "
6 | \r\n", "2 | \r\n", "18 | \r\n", "6 | \r\n", "30 | \r\n", "8 | \r\n", "
7 | \r\n", "6 | \r\n", "19 | \r\n", "18 | \r\n", "31 | \r\n", "30 | \r\n", "
8 | \r\n", "4 | \r\n", "20 | \r\n", "8 | \r\n", "32 | \r\n", "16 | \r\n", "
9 | \r\n", "6 | \r\n", "21 | \r\n", "12 | \r\n", "33 | \r\n", "20 | \r\n", "
10 | \r\n", "4 | \r\n", "22 | \r\n", "10 | \r\n", "34 | \r\n", "16 | \r\n", "
11 | \r\n", "10 | \r\n", "23 | \r\n", "22 | \r\n", "35 | \r\n", "24 | \r\n", "
12 | \r\n", "4 | \r\n", "24 | \r\n", "8 | \r\n", "36 | \r\n", "12 | \r\n", "
n = p1r¹ · p2r² · \r\n", "p3r³ ··· pkrₖ,
\r\n", "\r\n", "where p1, p2, p3, … pk are primes, and r1, r2, \r\n", "r3, … rk are positive integers, then the count of numbers less then n which are coprime to n isϕ(n) = (p1 − 1)p1r¹−1 · \r\n", "(p2 − 1)p2r²−1 · \r\n", "(p3 − 1)p3r³−1 ··· \r\n", "(pk − 1)pkrₖ−1,
\r\n", "\r\n", "Click here for the proof.\r\n", "\r\n", "\r\n", "Now that we know how to find generators of Zn, let us move on to other groups. Consider for example Z10*. First we \r\n", "load this into Sage:e = | \r\n", "x0, | \r\n", "
x = | \r\n", "x1, | \r\n", "
x·x = | \r\n", "x2, | \r\n", "
x·x·x = | \r\n", "x3, | \r\n", "
⋯⋯⋯⋯ | \r\n", "⋯⋯ | \r\n", "
x·x·x· ⋯ ·x = | \r\n", "xn−1, | \r\n", "
{e, x, x2, x3, x4}.
\r\n", "A multiplication table can be given by:b·a = (b·a)-1 = \r\n", "a-1·b-1 = a·b2
\r\n", "\r\n", "We can enter this into Sage with the commandc·b·c2·a = e, \r\n", "and c·a·c3·a·b = e
\r\n", "\r\n", "Even though you probably wouldn't have discovered these on your own, you might have discovered formulas similar to \r\n", "these in your experimentation. Let's see what we can do with these two.c·b = (c·c·a)\r\n", "-1 = a-1·c-1·c-1 =\r\n", "a·c3·c3 \r\n", "= a·c2.
\r\n", "\r\n", "From the second, we can deduce that\r\n", "\r\n", "c·a = (c3·a·b)-1 \r\n", "= b-1·a-1·c-3 \r\n", "= b2·a·c9 \r\n", "= b2·a·c\r\n", "= b·a·b2·c\r\n", "= a·b2·b2·c\r\n", "= a·b·c
\r\n", "\r\n", "Notice that we had to use the identity b·a = a·b2\r\n", "twice in the final computation. We can enter these properties into Sage as well:H ⊆ G,
\r\n", "\r\n", "if H consists only of the elements of G. The empty set {} is always considered to be a subset, \r\n", "but we will restrict our attention to non-empty subsets. We are particularly interested if the set H\r\n", "forms a group, since we then would have a "group within a group."if x and y ∈ H, then x·y ∈ H.
\r\n", "\r\n", "2: The identity element of G is in H.if x ∈ H, then x-1 ∈ H.
\r\n", "\r\n", "x·y-1 ∈ H for all x, y ∈ H.
\r\n", "\r\n", "Click here for the proof.\r\n", "\r\n", "\r\n", "Let us look at an example. The following commands reload the group S3, the permutation group on three objects, into Sage.H = {e, b, b2}.
\r\n", "It is easy to see that if x and y are in H, then x·y-1 is in H . (There are nine multiplications \r\n", "to check.) Therefore, this is a subgroup.k ℤ = {k·x | x ∈ ℤ}.
\r\n", "The vertical line is read "for which." Thus, k ℤ is the set of "all numbers \r\n", "which can be expressed as k·x for which x is an integer." In other \r\n", "words, k ℤ is the set of all multiples of k. It is clear that k ℤ is a\r\n", "group under addition, since the difference of two multiples of k gives another multiple of k.∩ | \r\n", "H. | \r\n", "
H ∈ L | \r\n", "\r\n", " |
H* = | \r\n", "∩ | \r\n", "H | \r\n", "
\r\n", " | H ∈ L | \r\n", "\r\n", " |
[S] = | \r\n", "∩ | \r\n", "H, | \r\n", "
\r\n", " | H ∈ L | \r\n", "\r\n", " |
(*) | \r\n", "\r\n", " | x1·x2·x3· ··· ·xn, | \r\n", "\r\n", " |
(e)2 = e. | \r\n", "\r\n", " |
(a)2 = e. | \r\n", "\r\n", " |
(b)2 = b2, | \r\n", "(b)3 = e. | \r\n", "
(a·b)2 = e. | \r\n", "\r\n", " |
(b2)2 = b, | \r\n", "(b2)3 = e. | \r\n", "
(a·b2)2 = e. | \r\n", "\r\n", " |
[x] = {e, x, x2, \r\n", "x3, …, xn−1}.
\r\n", "\r\n", "Click here for the proof.\r\n", "\r\n", "\r\n", "\r\n", "EXAMPLE:12 = 1. | \r\n", "\r\n", " | \r\n", " |
22 = 4, | \r\n", "23 = 8, | \r\n", "24 = 1. | \r\n", "
42 = 1. | \r\n", "\r\n", " | \r\n", " |
72 = 4, | \r\n", "73 = 13, | \r\n", "24 = 1. | \r\n", "
82 = 4, | \r\n", "83 = 2, | \r\n", "84 = 1. | \r\n", "
112 = 1. | \r\n", "\r\n", " | \r\n", " |
132 = 4, | \r\n", "133 = 7, | \r\n", "134 = 1. | \r\n", "
142 = 1. | \r\n", "\r\n", " | \r\n", " |
[x] = {…, x-3, x-2, \r\n", "x-1, x0 = e, x1, x2, \r\n", "x3, …},
\r\n", "where the powers of x are all distinct.G = { e = x0, x1, x2, x3, \r\n", "… , xn-1}
\r\n", "of order n, or is an infinite groupG = {…, x-3, x-2, x-1, x0 = e, \r\n", "x1, x2, x3, …}
\r\n", "where all powers of x are distinct.[k] = { k·x | x ∈ ℤ}.
\r\n", "We will denote the subgroup of the multiples of k by k ℤ. Note that 0 ℤ = {0}, \r\n", "and 1 ℤ = ℤ, so even the trivial subgroups are of this form.x·k ≡ 0 (mod n)
\r\n", "if and only if\r\n", "x = | \r\n", "a·n | \r\n", "
gcd(n, k) | \r\n", "
Rk(G) = ⎜{x ∈ G | xk = e}⎟.
\r\n", " \r\n", "Corollary 2.1 can now be expressed in the new notation. If G is a cyclic group, then\r\n", "Rk(G) = gcd(|G|, k).
\r\n", "\r\n", "Sage has a command RootCount(G, k) that will compute Rk(G). For example, we can redo the last experiment with the commands:gv = 1 in Zn
\r\n", " \r\n", "for some v. Since the group action of Zn is addition, raising to a power is equivalent to repeated addition, or standard \r\n", "multiplication.g v ≡ 1 (mod n).
\r\n", "By Proposition 1.7, there is such a v if, and only if, g is coprime to n.g v ≡ 1 (mod n), hence gv = 1 in Zn.
\r\n", "So 1 can be expressed as a power of g. But 1 is a generator of Zn, and so every element of Zn can be expressed as a power \r\n", "of 1, say 1w. Then that element can be written as g(v w) = (gv)w = 1w.\r\n", "So every element can be expressed as a power of g, hence g is a generator of Zn.ϕ(n m) = ϕ(n)·ϕ(m).
\r\n", "n = p1r¹ · p2r² \r\n", "· p3r³ ··· pkrₖ,
\r\n", "then p1r¹, p2r², p3r³, \r\n", "…, pkrₖ will all be coprime. Hence, we can find ϕ for each of these terms, and multiply them \r\n", "together, giving us our formula.[x] = {e = x0, x1, x2, x3, …, \r\n", "xn−1}
\r\n", "with these elements distinct. Indeed, if\r\n", "xa = xb with 0 ≤ a < b ≤ n − 1,
\r\n", "then xb−a = e, and 0 < b − a < n, which contradicts the definition of n. Therefore, \r\n", "the elements in\r\n", "{ e = x0, x1, x2, x3, …,\r\n", "xn−1 }
\r\n", "are all distinct.xr = y, with 0 ≤ r ≤ n − 1.
\r\n", "But y = xk for some k ∈ ℤ. We can define r = k mod n. \r\n", "Then 0 ≤ r ≤ n − 1, and furthermore, there is an integer q such that k − r = n q. Thus,y = xk = x(n q + r) = \r\n", "(xn)q·xr = eq·xr = xr.
\r\n", "So every element of [x] is of the form xr, with 0 ≤ r ≤ n − 1.[x] = {e = x0, x1, x2, x3, …, \r\n", "xn−1}.
\r\n", "But this contradicts the fact that [x] was infinite. Therefore, xn = e only if n = 0.x = | \r\n", "a·n | \r\n", ", | \r\n", "
gcd(n, k) | \r\n", "
x·k = | \r\n", "a·n·k | \r\n", "= a·n· | \r\n", "k | \r\n", ", | \r\n", "
gcd(n, k) | \r\n", "gcd(n, k) | \r\n", "
x k ≡ 0 (mod n).
\r\n", " \r\n", "Now suppose that x·k is a multiple of n. We want to show that\r\n", "a = | \r\n", "x·gcd(n, k) | \r\n", "
n | \r\n", "
a = | \r\n", "x·(u·n + v·k) | \r\n", "= x·u + | \r\n", "x·k·v | \r\n", ". | \r\n", "
n | \r\n", "n | \r\n", "
x = | \r\n", "a·n | \r\n", "
gcd(n, k) | \r\n", "
y·k ≡ 0 (mod n).
\r\n", "By Proposition 2.7, this is true if and only if\r\n", "y = | \r\n", "a·n | \r\n", "
gcd(n, k) | \r\n", "
n | \r\n", "= gcd(n, k). | \r\n", "
n / gcd(n, k) | \r\n", "