{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "\n", "\n", "
\n", "\n", "\n", "\n", "\n", "\n", "Abstract Algebra: An Interactive Approach, 2e\n", "
\n", "\n", "\n", "©2015 This notebook is provided with the textbook, "Abstract Algebra: An Interactive Approach, 2nd Ed." by William Paulsen. Users of this notebook are encouraged to buy the textbook.\n", "
\n", "\n", "\n", "\n", "\n",
"Chapter 4
\n",
"Mappings Between Groups\n",
"
Initialization: This cell MUST be evaluated first:
" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "%display latex\n", "try:\n", " load('absalgtext.sage')\n", "except IOError:\n", " load('/media/sf_sage/absalgtext.sage')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "{{e, a·b2·c, c2,\r\n", "a·b2·c3}, | \r\n", "
{a, b2·c, a·c2,\r\n", "b2·c3}, | \r\n", "
{b, a·b·c, b·c2, a·b·c3}, | \r\n", "
{a·b, b·c, a·b·c2, b·c3}, | \r\n", "
{b2, a·c, b2·c2, a·c3}, | \r\n", "
{a·b2, c, a·b2·c2, c3}}. | \r\n", "
e | \r\n", "↔ | \r\n", "{e, a·b2·c, c2,\r\n", "a·b2·c3} | \r\n", "
a·b2 | \r\n", "↔ | \r\n", "{a, b2·c, a·c2,\r\n", "b2·c3} | \r\n", "
b | \r\n", "↔ | \r\n", "{b, a·b·c, b·c2, \r\n", "a·b·c3} | \r\n", "
a | \r\n", "↔ | \r\n", "{a·b, b·c, a·b·c2, b·c3} | \r\n", "
b2 | \r\n", "↔ | \r\n", "{b2, a·c, b2·c2, a·c3} | \r\n", "
a·b | \r\n", "↔ | \r\n", "{a·b2, c, a·b2·c2, c3} | \r\n", "
{e, a·b2, b, a, b2, \r\n", "a·b},
\r\n", "the multiplication tables for G/M and S3 have the exact same color pattern.ƒ(e) | \r\n", "= | \r\n", "{e, a·b2·c, c2,\r\n", "a·b2·c3}, | \r\n", "
ƒ(a·b2) | \r\n", "= | \r\n", "{a, b2·c, a·c2,\r\n", "b2·c3}, | \r\n", "
ƒ(b) | \r\n", "= | \r\n", "{b, a·b·c, b·c2, \r\n", "a·b·c3}, | \r\n", "
ƒ(a) | \r\n", "= | \r\n", "{a·b, b·c, a·b·c2, b·c3}, | \r\n", "
ƒ(b2) | \r\n", "= | \r\n", "{b2, a·c, b2·c2, a·c3}, | \r\n", "
ƒ(a·b) | \r\n", "= | \r\n", "{a·b2, c, a·b2·c2, c3}. | \r\n", "
ƒ(x·y) = ƒ(x) · ƒ(y).
\r\n", "ƒ(x·y) = ƒ(x) · ƒ(y) for all x, y ∈ G1.
\r\n", "G1 ≈ G2.
\r\n", "\r\n", "{{e, a, a2}, {b, a·b, a2·b}}.
\r\n", "Thus, the group can be expressed by{{e, a, b, a·b}, \r\n", "{c, a·c, b·c, a·b·c}}.
\r\n", "Since c, a·c, and b·c all are of order 2, we have\r\n", "c·a = a·a·c·a·c·c = \r\n",
"a·(a·c)2·c = a·c
\r\n",
"c·b = b·b·c·b·c·c = \r\n",
"b·(b·c)2·c = b·c
H = {e, a, a2, a3}
\r\n", "is a subgroup of G, and since the index of H is two, Proposition 3.5 tells us that H is normal. Let b be an element not in \r\n", "H. Then the cosets of H are \r\n", "H = {{e, a, a2, a3}, \r\n", "{b, a·b, a2·b, a3·b}}.
\r\n", "The multiplication table for so looks like the following:n | \r\n", "groups | \r\n", "n | \r\n", "groups | \r\n", "n | \r\n", "groups | \r\n", "
---|---|---|---|---|---|
4 | \r\n", "2 | \r\n", "39 | \r\n", "2 | \r\n", "72 | \r\n", "50 | \r\n", "
6 | \r\n", "2 | \r\n", "40 | \r\n", "14 | \r\n", "74 | \r\n", "2 | \r\n", "
8 | \r\n", "5 | \r\n", "42 | \r\n", "6 | \r\n", "75 | \r\n", "3 | \r\n", "
9 | \r\n", "2 | \r\n", "44 | \r\n", "4 | \r\n", "76 | \r\n", "4 | \r\n", "
10 | \r\n", "2 | \r\n", "45 | \r\n", "2 | \r\n", "77 | \r\n", "1 | \r\n", "
12 | \r\n", "5 | \r\n", "46 | \r\n", "2 | \r\n", "78 | \r\n", "6 | \r\n", "
14 | \r\n", "2 | \r\n", "48 | \r\n", "52 | \r\n", "80 | \r\n", "52 | \r\n", "
15 | \r\n", "1 | \r\n", "49 | \r\n", "2 | \r\n", "81 | \r\n", "15 | \r\n", "
16 | \r\n", "14 | \r\n", "50 | \r\n", "5 | \r\n", "82 | \r\n", "2 | \r\n", "
18 | \r\n", "5 | \r\n", "51 | \r\n", "1 | \r\n", "84 | \r\n", "15 | \r\n", "
20 | \r\n", "5 | \r\n", "52 | \r\n", "5 | \r\n", "85 | \r\n", "1 | \r\n", "
21 | \r\n", "2 | \r\n", "54 | \r\n", "15 | \r\n", "86 | \r\n", "2 | \r\n", "
22 | \r\n", "2 | \r\n", "55 | \r\n", "2 | \r\n", "87 | \r\n", "1 | \r\n", "
24 | \r\n", "15 | \r\n", "56 | \r\n", "13 | \r\n", "88 | \r\n", "12 | \r\n", "
25 | \r\n", "2 | \r\n", "57 | \r\n", "2 | \r\n", "90 | \r\n", "10 | \r\n", "
26 | \r\n", "2 | \r\n", "58 | \r\n", "2 | \r\n", "91 | \r\n", "1 | \r\n", "
27 | \r\n", "5 | \r\n", "60 | \r\n", "13 | \r\n", "92 | \r\n", "4 | \r\n", "
28 | \r\n", "4 | \r\n", "62 | \r\n", "2 | \r\n", "93 | \r\n", "2 | \r\n", "
30 | \r\n", "4 | \r\n", "63 | \r\n", "4 | \r\n", "94 | \r\n", "2 | \r\n", "
32 | \r\n", "51 | \r\n", "64 | \r\n", "267 | \r\n", "95 | \r\n", "1 | \r\n", "
33 | \r\n", "1 | \r\n", "65 | \r\n", "1 | \r\n", "96 | \r\n", "230 | \r\n", "
34 | \r\n", "2 | \r\n", "66 | \r\n", "4 | \r\n", "98 | \r\n", "5 | \r\n", "
35 | \r\n", "1 | \r\n", "68 | \r\n", "5 | \r\n", "99 | \r\n", "2 | \r\n", "
36 | \r\n", "14 | \r\n", "69 | \r\n", "1 | \r\n", "100 | \r\n", "16 | \r\n", "
38 | \r\n", "2 | \r\n", "70 | \r\n", "4 | \r\n", "102 | \r\n", "4 | \r\n", "
ƒ(x·y) = ƒ(x)·ƒ(y)
\r\n", "for all x and y in G, then the two groups G and M were essentially the same, or isomorphic.ƒ(x·y) = ƒ(x)·ƒ(y)
\r\n", "for all x and y in G. Such functions are fundamental to the theory of groups, so we will give such functions a name.ƒ: G → M
\r\n", "mapping elements of G to elements of M is called a homomorphism if it satisfies\r\n", "ƒ(x·y) = ƒ(x)·ƒ(y) \r\n", "for all x, y ∈ G.
\r\n", "\r\n", "ƒ(x) = e for all x ∈ G,
\r\n", "then ƒ will obviously be a homomorphism, since \r\n", "ƒ(x·y) = e = e·e = ƒ(x)·ƒ(y).
\r\n", "This is called the trivial homomorphism.ƒ: ℝ* → ℝ*,
\r\n", "so this gives an example of a homomorphism which maps a group onto itself. Note that this homomorphism is neither one-to-one nor onto since \r\n", "ƒ(x·y) = (x·y)n = \r\n", "xn·yn = ƒ(x)·ƒ(y).
\r\n", "We can prove a few properties that must be true of all homomorphisms.\r\n", "\r\n", "\r\n", "\r\n", "PROPOSITION 4.31 | \r\n", "→ | \r\n", "e, | \r\n", "
i | \r\n", "→ | \r\n", "c2, | \r\n", "
−1 | \r\n", "→ | \r\n", "e, | \r\n", "
−i | \r\n", "→ | \r\n", "c2, | \r\n", "
j | \r\n", "→ | \r\n", "a·b2·c, | \r\n", "
k | \r\n", "→ | \r\n", "a·b2·c3, | \r\n", "
−j | \r\n", "→ | \r\n", "a·b2·c, | \r\n", "
−k | \r\n", "→ | \r\n", "a·b2·c3. | \r\n", "
G(a) | \r\n", "= | \r\n", "−1, | \r\n", "
G(b) | \r\n", "= | \r\n", "1, | \r\n", "
G(c) | \r\n", "= | \r\n", "−1. | \r\n", "
{−1, 1} | \r\n", "→ | \r\n", "e, | \r\n", "
{−i, i} | \r\n", "→ | \r\n", "c2, | \r\n", "
{−j, j} | \r\n", "→ | \r\n", "a·b2·c, | \r\n", "
{−k, k} | \r\n", "→ | \r\n", "a·b2·c3. | \r\n", "
ƒ(S) = {1,4,9,16}.
\r\n", "The set ƒ(S) is smaller than the set S, since the homomorphism mapped two elements to both 1 and 4.Im(ƒ).
\r\n", "Since the domain will be a group, by Proposition 4.5 the image will always be a subgroup of the target group.ƒ−1(S) = { y | ƒ(y) ∈ S}.
\r\n", "We can take the inverse homomorphism in Sage with the command HomoInv(ƒ, x) where x is the element or set to take the inverse function. Thus,Ker(ƒ) = ƒ−1(e).
\r\n", "Although this definition seems like corny terminology, it in fact is very descriptive term, for the kernel of the homomorphism in essence defines the entire function. \r\n", "The Sage commandƒ−1(y) = x·Ker(ƒ).
\r\n", "\r\n", "Click here for the proof.\r\n", "\r\n", "\r\n", "We now have a quick way to determine if a homomorphism is an isomorphism.\r\n", "\r\n", "\r\n", "COROLLARY 4.1ϕ: I → G/K
\r\n", "which is onto. Thus, I ≈ G/K.\r\n", " | \r\n", " | \r\n", " | \r\n", " | \r\n", " |
G | \r\n", " ƒ ―――――► | \r\n",
" I | \r\n", "||
\r\n", " | \r\n", " | \r\n", " | ↙ | \r\n", "ϕ | \r\n", "
\r\n", " | \r\n", " | G/Ker(ƒ) | \r\n", "\r\n", " | \r\n", " |
ϕ(ƒ(x)): G → G/Ker(ƒ).
\r\n", "What does this homomorphism do? Since ϕ(ƒ(x)) = ƒ−1(ƒ(x)),\r\n", "we have that x ∈ ϕ(ƒ(x)).\r\n", "Thus, this homomorphism sends every element of G to the coset in G/Ker(ƒ) which contains that element.iN : N → G/N
\r\n", "given by iN(a) = a·N. This homomorphism is surjective, and Ker(iN) = N.\r\n", " | \r\n", " | \r\n", " | \r\n", " | \r\n", " |
G | \r\n", " ƒ ―――――► | \r\n",
" I | \r\n", "||
iN | \r\n", "↘ | \r\n", "\r\n", " | ⤢ | \r\n", "ϕ | \r\n", "
\r\n", " | \r\n", " | G/Ker(ƒ) | \r\n", "\r\n", " | \r\n", " |
H·K = K·H.
\r\n", "\r\n", "Click here for the proof.\r\n", "\r\n", "\r\n", "We are now in a position to show that H·K is a subgroup if one of the subgroups H or K is normal.\r\n", "\r\n", "\r\n", "\r\n", "LEMMA 4.3i: H → G, i(h) = h.
\r\n", "This is called the identity homomorphism on H for the obvious reason. How will this help us create a filter? Let us define the homomorphism \r\n", "in Sage to find out.H/(H∩N) ≈ (H·N)/N.
\r\n", "\r\n", "Click here for the proof.H | \r\n", " i ―――► | \r\n",
" H·N | \r\n", "
ϕ↓ | \r\n", "\r\n", " | ↓ƒ | \r\n", "
H/(H∩N) | \r\n", "◄――► | \r\n", "(H·N)/N | \r\n", "
|H/(H∩N)| = |(H·N)/N|
\r\n", "we have|H|/|H∩N| = |H·N|/|N|. Thus,\r\n", "|H·N| = | \r\n", "| H | | N | | \r\n", ". | \r\n", "
| H ∩ N | | \r\n", "
|H·K| = | \r\n", "| H | | K | | \r\n", ". | \r\n", "
| H ∩ K | | \r\n", "
(G/N)/(H/N) ≈ G/H.
\r\n", "\r\n", "Click here for the proof.\r\n", "\r\n", "\r\n", "We can describe the third isomorphism theorem visually with the following diagram.G | \r\n", " ϕ ―――► | \r\n",
" G/N | \r\n", "
iH↓ | \r\n", "\r\n", " | ↓ƒ | \r\n", "
G/H | \r\n", "◄――► | \r\n", "(G/N)/(G/H) | \r\n", "
ƒ(ϕ): G → (G/N)/(H/N)
\r\n", "we have by the first isomorphism theorem that this diagram commutes.G = {e = g0, g1, g2, g3, …, \r\n", "gn−1}.
\r\n", "Define ƒ: Zn → G by\r\n", "ƒ(x) = gx (0 ≤ x ≤ n − 1).
\r\n", "That is, ƒ will map the elements of Zn to elements of G. Clearly ƒ is one-to-one and onto, and we would like to show that it is \r\n", "an isomorphism. Suppose x and y both satisfyƒ(x ∗ y) = gz = g(x+y−m n) = \r\n", "gx·gy·(gn)−m = gx·gy \r\n", "= ƒ(x)·ƒ(y).
\r\n", "Since ƒ is an isomorphism of Zn onto G, we have Zn ≈ G.a = a·e = a·(b·b) = \r\n", "(a·b)·b = e·b = b.
\r\n", "So a·b is not the identity either. So there must be a fourth element in G, which we will call c, such that \r\n", "a·b = c. This element will also be of order 2, so we have c2 = e.b·a = e·b·a·e = \r\n", "a·a·b·a·b·b = \r\n", "a·(a·b)2·b = \r\n", "a·c2·b = a·e·b = a·b = c.
\r\n", "With this result we can quickly find the remaining products involving a, b, and c.\r\n", "c·a = b·a·a = b, c·b = \r\n", "a·b·b = a, a·c = a·a·b = b, \r\n", "b·c = b·b·a = a.
\r\n", "Hence, the set H = {e, a, b, c} is closed under multiplication, contains the identity, and also contains the inverses of \r\n", "every element in the set. Hence, H is a subgroup of G. The multiplication table for H\r\n", "· | \r\n", "e | \r\n", "a | \r\n", "b | \r\n", "c | \r\n", "
---|---|---|---|---|
e | \r\n", "e | \r\n", "a | \r\n", "b | \r\n", "c | \r\n", "
a | \r\n", "a | \r\n", "e | \r\n", "c | \r\n", "b | \r\n", "
b | \r\n", "b | \r\n", "c | \r\n", "e | \r\n", "a | \r\n", "
c | \r\n", "c | \r\n", "b | \r\n", "a | \r\n", "e | \r\n", "
ƒ(e) = 1,
ƒ(a) = 3,
ƒ(b) = 5,
ƒ(c) = 7.
ƒ(e) = ƒ(e·e) = \r\n", "ƒ(e)·ƒ(e).
\r\n", "Multiplying both sides by [ƒ(e)]-1 gives us that ƒ(e) is the identity element of M.ƒ(a)·ƒ(a-1) = ƒ(a·a-1) = \r\n", "ƒ(e)
\r\n", "By Proposition 4.3 this is the identity element of M. So ƒ(a-1) = [ƒ(a)]-1.ƒ(x) = u, and ƒ(y) = v.
\r\n", "Then x·y-1 is in H, and so \r\n", "ƒ(x·y-1) = ƒ(x)·ƒ(y-1) = \r\n", "ƒ(x)·[ƒ(y)]-1 = u·v-1
\r\n", "is in ƒ(H). So by Proposition 2.2, ƒ(H) is a subgroup of M.ƒ(a·b-1) = ƒ(a)·ƒ(b)-1 = \r\n", "e·e-1 = e.
\r\n", "so a·b-1 is also in the kernel of ƒ. Thus, by Proposition 2.2, Ker(ƒ) is a subgroup.ƒ(g·a·g-1) = \r\n", "ƒ(g)·ƒ(a)·ƒ(g-1) = \r\n", "ƒ(g)·e·ƒ(g)-1 = e,
\r\n", "g·a·g-1 is in Ker(ƒ), and so Ker(ƒ) is a normal subgroup.ƒ(z) = ƒ(x·k) = ƒ(x)·ƒ(k) \r\n", "= ƒ(x)·e = ƒ(x)
\r\n", "since k is in Ker(ƒ). Here, e is the identity element of M. But ƒ(x) = y, and so\r\n", "z ∈ ƒ−1(y). Thus we have proved that \r\n", "ƒ−1(y) ⊆ x·Ker(ƒ).
\r\n", "ƒ(x-1·z) = ƒ(x)-1·ƒ(z) = \r\n", "y-1·y = e.
\r\n", "Thus, x-1·z is in the kernel of ƒ, and since \r\n", "z = x·(x-1·z) ∈ x·Ker(ƒ), we have\r\n", "x·Ker(ƒ) ⊆ ƒ−1(y).
\r\n", " \r\n", "Return to text \r\n", " \r\n", "ϕ(h) = ƒ−1(h).
\r\n", "x ∈ ƒ−1(ƒ(x)) = ϕ(ƒ(x)) \r\n", "∈ G/K.
\r\n", "So we have that x is an element of both cosets x K and ϕ(ƒ(x)). Since two different cosets have no elements in \r\n", "common, we must have ϕ(ƒ(x)) = x K. We therefore have that any coset in G/K is mapped by ϕ \r\n", "from an element in I, so ϕ is onto.ƒ−1(v)·ƒ−1(w) = \r\n", "ƒ−1(v·w).
\r\n", "ƒ(x·y) = ƒ(x)·ƒ(y) = \r\n", "v·w.
\r\n", "Hence, x·y ∈ ƒ−1(v·w). Since \r\n", "ƒ−1(v)·ƒ−1(w) and ƒ−1(v·w) are two cosets in \r\n", "G/K, and both contain the element x·y, they must be the same coset. So we have that\r\n", "ϕ(v)·ϕ(w) = ϕ(v·w).
\r\n", " \r\n", "Return to text \r\n", "\r\n", "iN(a·b) = a·b·N = \r\n", "a·N·b·N = iN(a)·iN(b).
\r\n", "Also, iN is clearly surjective. To find the kernel of iN, we note that the identity element of G/N is\r\n", "e N = N, and so x is in the kernel if, and only if,\r\n", "iN(x) = N ⟺ x N = N ⟺ x ∈ N.
\r\n", "Therefore, the kernel of iN is N.H·K ⊆ K·H.
\r\n", "By a similar argument, the inverse of any element in K·H must be in H·K, and so \r\n", "K·H ⊆ H·K. Therefore, we have H·K = K·H.h1, h2 ∈ H, and k1, k2 ∈ K
\r\n", "so both h1·k1 and h2·k2 are elements of H·K. \r\n", "By Proposition 2.2, it is enough to show that \r\n", "h1·k1·(h2·k2)-1 is in H·K. \r\n", "But (k1·k2-1)·h2-1 is in \r\n", "K·H = H·K, and so there must be two elements\r\n", "h3 ∈ H, and k3 ∈ K
\r\n", "such that (k1·k2-1)·h2-1 = \r\n", "h3·k3. Then we have\r\n", "h1·k1·(h2·k2)-1 =\r\n", "h1·(k1·k2-1)·h2-1 =\r\n", "(h1·h3)·k3
\r\n", "which is in H·K. Thus, H·K is a subgroup if, and only if, H·K = \r\n", "K·H.h·n = (h·n·h-1)·h
\r\n", "is in N·H. Thus, H·N ⊆ N·H.x·N·x-1 = N
\r\n", "since x is also in G. Therefore, by Proposition 3.4, N is a normal subgroup of H.h·x·h-1 ∈ H ∩ N
\r\n", "and so by Proposition 3.4, the intersection is a normal subgroup of H.i: H → H·N
\r\n",
"ƒ: H·N → (H·N)/N
ƒ(i(x)): H → (H·N)/N.
\r\n", "Let us call the composition function ψ(h) = f(i(h)). We want to find the kernel of ψ, for then we \r\n", "can use the first isomorphism theorem (4.1). If we let e denote the identity element of \r\n", "(H·N)/N, then\r\n", "h ∈ \r\n", "Ker(ψ) ⟺ ƒ(i(h)) = e ⟺ i(h) ∈ \r\n", "Ker(ƒ) = N ⟺ h ∈ N and h ∈ H ⟺ h ∈ \r\n", "H ∩ N.
\r\n", "So by the first isomorphism theorem (4.1), we have\r\n", "(H·N)/N ≈ \r\n", "H/(H ∩ N).
\r\n", "\r\n", "Return to text\r\n", "\r\n", "| H·K | | \r\n", ". | \r\n", "|
| K | | \r\n", "
|H/(H∩K)| = | \r\n", "| H | | \r\n", ". | \r\n", "
| H ∩ K | | \r\n", "
ϕ : (H·K)/K → H/(H∩K)
\r\n", "be defined by \r\n", "ϕ(h·K) = h·(H∩K).
\r\n", "To see that this is well defined, note that if h1·K = h2·K for two elements h1 \r\n", "and h2 in H, then h2-1·h1·K = \r\n", "K, so h2-1·h1 must be in K. But \r\n", "h2-1·h1 is also in H, hence in the intersection. Thus,\r\n", "h2·(H∩K) = \r\n", "h2·(h2-1·h1)·(H∩K) = \r\n", "h1·(H∩K).
\r\n", "So we see that if h1·K = h2·K, then ϕ(h1·K) = \r\n", "ϕ(h2·K), and the function ϕ is well defined.(g N)·(h N)·(g N)-1
\r\n", "will always be in H/N. But this simplifies to (g·h·g-1)·N, and \r\n", "g·h·g-1 is in H since H is a normal subgroup of G. Therefore, \r\n", "(g·h·g-1)·N is in H/N, and hence H/N is a normal subgroup \r\n", "of G/N.x ∈ Ker(ψ) ⟺ ƒ(ϕ(x)) = e
\r\n",
"⟺ ϕ(x) ∈ Ker(ƒ) = H/N
\r\n",
"⟺ x ∈ ϕ-1(H/N) = H.
(G/N)/(H/N) ≈ G/H.
\r\n", "\r\n", "Return to text\r\n", "\r\n", "( Z8, Z24*, Z15*, D4, or \r\n", "Q )
\r\n", "is each of these isomorphic to? First have Sage display a table of the new group, and then rearrange the elements of one of the five known groups so that the \r\n", "color pattens in the two tables are identical.