{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "\n", "\n", "
\n", "\n", "\n", "\n", "\n", "\n", "Abstract Algebra: An Interactive Approach, 2e\n", "
\n", "\n", "\n", "©2015 This notebook is provided with the textbook, "Abstract Algebra: An Interactive Approach, 2nd Ed." by William Paulsen. Users of this notebook are encouraged to buy the textbook.\n", "
\n", "\n", "\n", "\n", "\n",
"Chapter 5
\n",
"Permutation Groups\n",
"
Initialization: This cell MUST be evaluated first:
" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "%display latex\n", "try:\n", " load('absalgtext.sage')\n", "except IOError:\n", " load('/media/sf_sage/absalgtext.sage')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "1 | \r\n", "⎠ | \r\n", "
green purple red orange
\r\n", "which, when compared to the original position, translates to 2, 3, 1, 4, giving the permutation⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "2 | \r\n", "3 | \r\n", "1 | \r\n", "4 | \r\n", "⎠ | \r\n", "
⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "· | \r\n", "⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "= | \r\n", "⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "1 | \r\n", "⎠ | \r\n", "⎝ | \r\n", "1 | \r\n", "2 | \r\n", "4 | \r\n", "3 | \r\n", "⎠ | \r\n", "⎝ | \r\n", "2 | \r\n", "3 | \r\n", "1 | \r\n", "4 | \r\n", "⎠ | \r\n", "
⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "· | \r\n", "⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "= | \r\n", "⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "1 | \r\n", "2 | \r\n", "4 | \r\n", "3 | \r\n", "⎠ | \r\n", "⎝ | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "1 | \r\n", "⎠ | \r\n", "⎝ | \r\n", "2 | \r\n", "4 | \r\n", "3 | \r\n", "1 | \r\n", "⎠ | \r\n", "
ƒ(1) = 2 | \r\n", "ϕ(1) = 2 | \r\n", "
ƒ(2) = 3 | \r\n", "ϕ(2) = 3 | \r\n", "
ƒ(3) = 1 | \r\n", "ϕ(3) = 4 | \r\n", "
ƒ(4) = 4 | \r\n", "ϕ(4) = 1. | \r\n", "
ƒ(x) = | \r\n", "⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "ϕ(x) = | \r\n", "⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "2 | \r\n", "3 | \r\n", "1 | \r\n", "4 | \r\n", "⎠ | \r\n", "⎝ | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "1 | \r\n", "⎠ | \r\n", "
ƒ(ϕ(1)) = ƒ(2) = 3
\r\n",
" ƒ(ϕ(2)) = ƒ(3) = 1
\r\n",
" ƒ(ϕ(3)) = ƒ(4) = 4
\r\n",
" ƒ(ϕ(4)) = ƒ(1) = 2
⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "3 | \r\n", "1 | \r\n", "4 | \r\n", "2 | \r\n", "⎠ | \r\n", "
ƒ(ϕ(x)) = (ƒ·ϕ)(x).
\r\n", "\r\n", "⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "5 | \r\n", "⎞ | \r\n", "· | \r\n", "⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "5 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "5 | \r\n", "4 | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "⎠ | \r\n", "⎝ | \r\n", "4 | \r\n", "3 | \r\n", "5 | \r\n", "1 | \r\n", "2 | \r\n", "⎠ | \r\n", "
P(5,4,1,2,3) · P(4,3,5,1,2).
\r\n", "In general, a permutation in Sn can be written\r\n", "P(x1, x2, x3, … xn).
\r\n", "Note that the numbers x1, x2, x3, … xn must all be different and must consist of \r\n", "the numbers from 1 to n. This permutation corresponds to the function\r\n", "ƒ(1) = x1
\r\n",
" ƒ(2) = x2
\r\n",
" ƒ(3) = x3
\r\n",
" ………
\r\n",
" ƒ(n) = xn.
n! = n·(n − 1)·(n − 2)·(n − 3)·… · \r\n", "2·1
\r\n", "The number n! is read "n factorial," and represents the product of the first n numbers. Here is a short table of n!:1! | \r\n", "= | \r\n", "1 | \r\n", "
2! | \r\n", "= | \r\n", "2 | \r\n", "
3! | \r\n", "= | \r\n", "6 | \r\n", "
4! | \r\n", "= | \r\n", "24 | \r\n", "
5! | \r\n", "= | \r\n", "120 | \r\n", "
6! | \r\n", "= | \r\n", "720 | \r\n", "
7! | \r\n", "= | \r\n", "5040 | \r\n", "
8! | \r\n", "= | \r\n", "40320 | \r\n", "
9! | \r\n", "= | \r\n", "362880 | \r\n", "
10! | \r\n", "= | \r\n", "3628800 | \r\n", "
ƒ(b)·ƒ(a) = \r\n", "ƒ(a)·ƒ(b)·ƒ(b).
\r\n", "The way to have Sage check that ƒ is so far defined consistently is to find whether ƒ is a homomorphism on \r\n", "the subgroup containing a and b. If we enterP(4, 1, 2, 3)
\r\n",
"P(2, 4, 1, 3)
\r\n",
"P(3, 1, 4, 2)
\r\n",
"P(4, 3, 1, 2)
\r\n",
"P(2, 3, 4, 1)
\r\n",
"P(3, 4, 2, 1)
P(2, 4, 1, 3)
\r\n",
"P(3, 1, 4, 2)
\r\n",
"P(4, 3, 1, 2)
\r\n",
"P(2, 3, 4, 1)
\r\n",
"P(3, 4, 2, 1)
⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "5 | \r\n", "⎞-1 | \r\n", "= | \r\n", "⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "5 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "5 | \r\n", "4 | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "⎠ | \r\n", "⎝ | \r\n", "3 | \r\n", "4 | \r\n", "5 | \r\n", "2 | \r\n", "1 | \r\n", "⎠ | \r\n", "
⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "5 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "5 | \r\n", "4 | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "⎠ | \r\n", "
1 → 4 → 3 → 2 → 5 → 1.
\r\n", "This can be read, "1 goes to 4 which goes to 3 which goes to 2 which goes to 5 which goes back to 1." \r\n", "Any permutation which can be expressed as a chain like this one is called a cycle.1 → 2 → 4 → 6 → 3 → 1.
\r\n", "This chain states where each number goes except for the number 5. However, if we stipulate that all numbers that are not mentioned \r\n", "in the chain map to themselves, we have expressed the permutation P(2,4,1,6,5,3) as a single chain, and hence this is also a cycle.1 → 2 → 4 → 6 → 3 → 1.
\r\n", "one only has to spot the 4 and see that it maps to 6. We can further simplify the chains by using a more compact notation:\r\n", "(1 2 4 6 3)
\r\n", "Here, each number is mapped to the next number in the chain. The last number always maps back to the first number. This notation is called the \r\n", "cycle notation of the permutation.(i1 i2 i3 ··· ir)-1 =\r\n", "(ir ir−1 ··· i3 i2 i1).
\r\n", "so the inverse of an r-cycle will always be an r-cycle. However, the product of two cycles may not always give a cycle, but a permutation. The \r\n", "identity element can be written as the 0-cycle ( ).P(5,4,1,2,3) = (1 5 3), P(1,4,3,2,5) = (2 4).
\r\n", "(i1 i2 i3 ··· ir) and\r\n", " (j1 j2 j3 ··· js)
\r\n", "are disjoint if none of the i's are equal to any of the j's.⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "5 | \r\n", "6 | \r\n", "7 | \r\n", "8 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "4 | \r\n", "6 | \r\n", "1 | \r\n", "8 | \r\n", "2 | \r\n", "5 | \r\n", "7 | \r\n", "3 | \r\n", "⎠ | \r\n", "
(1 4 8 3)·(2 6 5).
\r\n", "We can imitate this process for any permutation. As a result, we have the following lemma:\r\n", "\r\n", "\r\n", "\r\n", "LEMMA 5.1C(i, j, k, … )
\r\n", "to denote the cycle (i j k …). Sage can multiply two cycles together. For example, to multiply (2 3 4 5)·(1 2 4), typePermToCycle( P(………)) and CycleToPerm( C(………))
\r\n", "tell Sage to switch between the two notations. Thus, to convert our answer to a permutation, we type⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "5 | \r\n", "6 | \r\n", "7 | \r\n", "8 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "4 | \r\n", "6 | \r\n", "1 | \r\n", "8 | \r\n", "2 | \r\n", "5 | \r\n", "7 | \r\n", "3 | \r\n", "⎠ | \r\n", "
n(n − 1) = n2 − n
\r\n", "ways of forming an ordered pair (i1, i2) with \r\n", "i1 unequal to i2. However, the transposition (i1 i2) is the same as the transposition \r\n", "(i2 i1). Thus, by counting ordered pairs, we have counted each transposition twice. Therefore, to find the number of \r\n", "transpositions, we divide that count by 2 to getn2 − n | \r\n", ". | \r\n", "
2 | \r\n", "
σ: Sn → ℤ
\r\n", "by\r\n", "σ(x) = (−1)N(x),
\r\n", "where N(x) is the minimum number of transpositions needed to express x as a product of transpositions. Then this function, called \r\n", "the signature function, is a homomorphism from Sn to the integers {−1, 1}.1) | \r\n", "1 | \r\n", "
2) | \r\n", "i | \r\n", "
3) | \r\n", "j | \r\n", "
4) | \r\n", "k | \r\n", "
5) | \r\n", "−1 | \r\n", "
6) | \r\n", "−i | \r\n", "
7) | \r\n", "−j | \r\n", "
8) | \r\n", "−k | \r\n", "
x | \r\n", "ƒ(x) LeftMult(x) | \r\n",
" ϕ(x) RightMult(x) | \r\n",
"
---|---|---|
1 | \r\n", "( ) | \r\n", "( ) | \r\n", "
i | \r\n", "(1 2 5 6)(3 8 7 4) | \r\n", "(1 2 5 6)(3 4 7 8) | \r\n", "
j | \r\n", "(1 3 5 7)(2 4 6 8) | \r\n", "(1 3 5 7)(2 8 6 4) | \r\n", "
k | \r\n", "(1 4 5 8)(2 7 6 3) | \r\n", "(1 4 5 8)(2 3 6 7) | \r\n", "
−1 | \r\n", "(1 5)(2 6)(3 7)(4 8) | \r\n", "(1 5)(2 6)(3 7)(4 8) | \r\n", "
−i | \r\n", "(1 6 5 2)(3 4 7 8) | \r\n", "(1 6 5 2)(3 8 7 4) | \r\n", "
−j | \r\n", "(1 7 5 3)(2 8 6 4) | \r\n", "(1 7 5 3)(2 4 6 8) | \r\n", "
−k | \r\n", "(1 8 5 4)(2 3 6 7) | \r\n", "(1 8 5 4)(2 7 6 3) | \r\n", "
1 ) | \r\n", "{ e, b } | \r\n", "
2 ) | \r\n", "{ a, a·b } | \r\n", "
3 ) | \r\n", "{ a2, a2·b } | \r\n", "
4 ) | \r\n", "{ a3, a3·b } | \r\n", "
108 divides (108/27)! ·|N|=24·|N|.
\r\n", "But this means that |N| must be a multiple of 9. Since N is a subgroup of H, which has order 27, we see that N is of \r\n", "order 9 or 27. Hence, we have proven that G contains a normal subgroup of either order 9 or 27. \r\n", "This will go a long way in finding the possible group structures of G, using only the size of the group G.ϕ(i) = (1 2 5 6)(3 4 7 8)
\r\n",
" ϕ(j) = (1 3 5 7)(2 8 6 4).
1st permutation = | \r\n", "P( ) | \r\n", "
2nd permutation = | \r\n", "P(2, 1) | \r\n", "
3rd permutation = | \r\n", "P(1, 3, 2) | \r\n", "
4th permutation = | \r\n", "P(3, 1, 2) | \r\n", "
5th permutation = | \r\n", "P(2, 3, 1) | \r\n", "
6th permutation = | \r\n", "P(3, 2, 1) | \r\n", "
7th permutation = | \r\n", "P(1, 2, 4, 3) | \r\n", "
……… | \r\n", "……… | \r\n", "
24th permutation = | \r\n", "P(4, 3, 2, 1) | \r\n", "
(1 2 5 6)(3 4 7 8) and (1 3 5 7)(2 8 6 4).
\r\n", "We first convert these cycles to permutations, which will display as integers.P(4, 1, 7, 6, 3, 2, 5)
\r\n",
" 0 1 0 1 3 4 2
0 · 0! + 1 · 1! + 0 · 2! + 1 · 3! + 3 · 4! + 4 · 5! + 2 · 6! + 1 = 2000.
\r\n", "3999 = 2 · | \r\n", "1999 + 1 | \r\n", "
1999 = 3 · | \r\n", "666 + 1 | \r\n", "
666 = 4 · | \r\n", "166 + 2 | \r\n", "
166 = 5 · | \r\n", "33 + 1 | \r\n", "
33 = 6 · | \r\n", "5 + 3 | \r\n", "
5 = 7 · | \r\n", "0 + 5 | \r\n", "
{1, 2, 3, 4, 5, 6, 7}
\r\n", "\r\n", "For each remainder m, we \r\n", "consider the (m + 1)st largest number in the list which has not been crossed out. Since the last remainder is 5, we take the 6th largest number, which is 2. This eliminates 2 from the list.3999 = 2 · | \r\n", "1999 + 1 | \r\n", "\r\n", " |
1999 = 3 · | \r\n", "666 + 1 | \r\n", "\r\n", " |
666 = 4 · | \r\n", "166 + 2 | \r\n", "\r\n", " |
166 = 5 · | \r\n", "33 + 1 | \r\n", "\r\n", " |
33 = 6 · | \r\n", "5 + 3 | \r\n", "\r\n", " |
5 = 7 · | \r\n", "0 + 5 | \r\n", "⟹ 2 | \r\n", "
{1, 2, 3, 4, 5, 6, 7}
\r\n", "\r\n", "Here is the result after processing two more remainders.\r\n", "\r\n", "3999 = 2 · | \r\n", "1999 + 1 | \r\n", "\r\n", " |
1999 = 3 · | \r\n", "666 + 1 | \r\n", "\r\n", " |
666 = 4 · | \r\n", "166 + 2 | \r\n", "\r\n", " |
166 = 5 · | \r\n", "33 + 1 | \r\n", "⟹ 6 | \r\n", "
33 = 6 · | \r\n", "5 + 3 | \r\n", "⟹ 4 | \r\n", "
5 = 7 · | \r\n", "0 + 5 | \r\n", "⟹ 2 | \r\n", "
{1, 2, 3, 4, 5, 6, 7}
\r\n", "\r\n", "The next remainder is 2, so we take the 3rd largest number which is not crossed out, which is 3. Continuing, we get the following.3999 = 2 · | \r\n", "1999 + 1 | \r\n", "⟹ 1 | \r\n", "
1999 = 3 · | \r\n", "666 + 1 | \r\n", "⟹ 5 | \r\n", "
666 = 4 · | \r\n", "166 + 2 | \r\n", "⟹ 3 | \r\n", "
166 = 5 · | \r\n", "33 + 1 | \r\n", "⟹ 6 | \r\n", "
33 = 6 · | \r\n", "5 + 3 | \r\n", "⟹ 4 | \r\n", "
5 = 7 · | \r\n", "0 + 5 | \r\n", "⟹ 2 | \r\n", "
{1, 2, 3, 4, 5, 6, 7}
\r\n", "\r\n", "The only number not crossed out is 7, which becomes the first number in the permutation. The rest of the permutation can be read from the new numbers from top to bottom, producing P(7, 1, 5, 3, 6, 4, 2).x = \r\n", "y·c1·c2·c3·…·ct.
\r\n", "Therefore, x can be written as a product of disjoint nontrivial cycles. By induction, every permutation besides the identity can be written as a product \r\n", "of nontrivial disjoint cycles.x = c1·c2·c3·…·cr\r\n", "= d1·d2·d3·…·ds.
\r\n", "For any integer i1 not fixed by x, one and only one cycle must contain i1. Suppose that cycle is \r\n", "cj = (i1, i2, i3, … iq). But by the way we constructed \r\n", "the cycles above, this cycle must also be one of the dk's. Thus, each cycle cj is equal to \r\n", "dk for some k. By symmetry, each dk is equal to cj for some j. Thus, the two ways of \r\n", "writing x in terms of nontrivial disjoint cycles are merely rearrangements of the cycles.x = (i1 i2 i3 … \r\n", "ir)·(j1 j2 … js)·(k1 k2 \r\n", "… kt)·….
\r\n", "Now, consider the product of transpositions\r\n", "(i1 i2)·(i2 \r\n", "i3)· ⋯ ·(ir−1 ir)·(j1 \r\n", "j2)·(j2 j3)· ⋯ ·(js−1 \r\n", "js)·(k1 k2)· ⋯ ·(kt−1 kt)· ⋯ .
\r\n", "Note that this product is equal to x. (Recall that we are working from right to left.) Therefore, we have expressed every element of Sn\r\n", "as a product of transpositions.(n x)(n x), (n x)(n y), \r\n", "(x y)(n x), or (y x)(n x)
\r\n", "for some x, y, and z. In the first case, the two transpositions cancel, so we can form a product using a fewer number of transpositions. In \r\n", "the other three cases, we can replase the pair with another pair,\r\n", "(n x)(n y) = (n y)(x y); \r\n", "(x y)(n x) = (n y)(x y); \r\n", "(y z)(n x) = (n x)(y z);
\r\n", "for which m is smaller. Thus, there is no odd product of transpositions in Sn equaling the identity.σ(x·y) ≠ σ(x)·σ(y).
\r\n", "Then N(x·y) − (N(x) + N(y)) would be an odd number. Since \r\n", "N(x-1) = N(x), we would also have N(x·y) + (N(y-1) + \r\n", "N(x-1))\r\n", "being an odd number. But then we would have three sets of transpositions, totaling an odd number, which when strung together produce \r\n", "x·y·y-1·x-1 = ( ). This contradicts Lemma 5.3, so in fact \r\n", "σ(x·y) = σ(x)·σ(y) for all x and y in \r\n", "Sn.x = [(i1 j1)·(k1 l1)] · \r\n", " [(i2 j2)·(k2 l2)] ·\r\n", " … · [(ir jr)·(kr lr)].
\r\n", "If we could convert each pair of transpositions into 3-cycles, we would have the permutation x expressed as a product of 3-cycles. \r\n", "There are three cases to consider:(im jm)·(km lm) = \r\n", "(im km lm)·(im jm lm).
\r\n", "im = km, im = lm, jm = \r\n", "km, or jm = lm
\r\n", "However, these four possibilities are essentially the same, so we only have to check one of these four combinations: im = km. \r\n", "Then we have\r\n", "(im jm)·(im lm) = \r\n", "(im lm jm).
\r\n", "(im jm)·(km lm) = \r\n", "( ) = (1 2 3)·(1 3 2).
\r\n", "In all three cases, we were able to express a pair of transpositions in terms of a product of one or two 3-cycles. Therefore, the permutation x can be \r\n", "written as a product of 3-cycles.pg : G → G by pg(x) = g·x.
\r\n", "For a given g, if pg(x) = pg(y), then g·x = g·y, \r\n", "so x = y. Hence, pg is a one-to-one mapping. Since G is a finite group, we can use to pigeonhole principle to show that\r\n", "pg is also onto, and hence is a permutation of the elements of G.ϕ(g) = pg.
\r\n", "Now, consider two elements ϕ(g) and ϕ(h). The product of these is the mapping\r\n", "x → (pg·ph)(x) = pg(ph(x)) = pg(h·x) = \r\n", "g·(h·x) = (g·h)·x.
\r\n", "Since this is the same as ϕ(g·h), ϕ is a homomorphism.pg : Q → Q by pg(x H) = g·x H.
\r\n", "Note that this is well defined, since if x H = y H, then g·x H = g·y H.ϕ(g) = pg.
\r\n", "Now, consider two elements ϕ(g) and ϕ(h). The product of these is the mapping\r\n", "x H → (pg·ph)(x H) = \r\n", "pg(ph(x H)) = pg(h·x H) = \r\n", "g·(h·x H) = (g·h)·x H.
\r\n", "Since this is the same as ϕ(g·h), ϕ is a homomorphism.G/N ≈ I.
\r\n", "In particular, |G|/|N| = |I|, and |I| is a factor \r\n", "of |Sk| = k!. This means that |G| is a factor of k!· |N|.⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "1 | \r\n", "3 | \r\n", "2 | \r\n", "4 | \r\n", "⎠ | \r\n", "
⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "4 | \r\n", "2 | \r\n", "3 | \r\n", "1 | \r\n", "⎠ | \r\n", "
⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "3 | \r\n", "1 | \r\n", "4 | \r\n", "2 | \r\n", "⎠ | \r\n", "
⎛ | \r\n", "1 | \r\n", "2 | \r\n", "3 | \r\n", "4 | \r\n", "⎞ | \r\n", "
⎝ | \r\n", "2 | \r\n", "4 | \r\n", "1 | \r\n", "3 | \r\n", "⎠ | \r\n", "