{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "\n", "\n", "
\n", "\n", "\n", "\n", "\n", "\n", "Abstract Algebra: An Interactive Approach, 2e\n", "
\n", "\n", "\n", "©2015 This notebook is provided with the textbook, "Abstract Algebra: An Interactive Approach, 2nd Ed." by William Paulsen. Users of this notebook are encouraged to buy the textbook.\n", "
\n", "\n", "\n", "\n", "\n",
"Chapter 8
\n",
"Solvable and Insoluble Groups\n",
"
Initialization: This cell MUST be evaluated first:
" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "%display latex\n", "try:\n", " load('absalgtext.sage')\n", "except IOError:\n", " load('/media/sf_sage/absalgtext.sage')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "G = G0 ⊇ G1 ⊇ G2 ⊇ \r\n", "⋯ ⊇ Gn = {e}.
\r\n", "where each Gi is a normal subgroup of Gi−1 for i = 1, 2,…, n.S4 ⊇ K ⊇ {( )}
\r\n", "which would be a subnormal series of length n = 2. Is there a way that we can make a longer series out of this one? Because A4 is also a \r\n", "normal subgroup of S4, and K is a normal subgroup of A4, we can slip this group into our series. Also, the group \r\n", "K contains some proper subgroups, which will be normal subgroups of K since K is abelian. For an example of a proper subgroup, considerS4 ⊇ A4 ⊇ K ⊇ H ⊇ {( )}.
\r\n", "We say that this new subnormal series is a refinement of the first subnormal series.G = H0 ⊇ H1 ⊇ H2 ⊇ \r\n", "⋯ ⊇ Hk = {e}
\r\n", "is a refinement of the subnormal (or normal) series\r\n", "G = G0 ⊇ G1 ⊇ G2 ⊇ \r\n", "⋯ ⊇ Gn = {e}
\r\n", "if each subgroup Gi appears as Hj for some j.S4 ⊇ A4 ⊇ A4 ⊇ K ⊇ H ⊇ H \r\n", "⊇ H ⊇ {( )}.
\r\n", "This is certainly a longer subnormal series, but it is rather pointless to repeat the same subgroup in the series. Let us make the following definition:G = G0 ⊇ G1 ⊇ G2 ⊇ \r\n", "⋯ ⊇ Gn = {e},
\r\n", "for which each subgroup is smaller than the proceeding subgroup, and for which there is no refinement that includes additional subgroups.\r\n", "\r\n", "\r\n", "S4 ⊇ A4 ⊇ K ⊇ H ⊇ {( )}
\r\n", "is a composition series for S4, since no subgroups are repeated, and there simply isn't enough room between two of these subgroups to slip in \r\n", "another subgroup. For example, A4 is half of the size of S4, so any subgroup containing more than A4 must be \r\n", "all of S4. In fact, we can easily test to see whether a subnormal series is a composition series.\r\n", "\r\n", "\r\n", "\r\n", "PROPOSITION 8.1G = G0 ⊇ G1 ⊇ G2 ⊇ \r\n", "⋯ ⊇ Gn = {e}
\r\n", "is a composition series if, and only if, all of the quotient groups Gk−1/Gk are nontrivial simple groups.S4 ⊇ A4 ⊇ K ⊇ H ⊇ {( )}
\r\n", "We have\r\n", "S4/A4 ≈ Z2, A4/K ≈ \r\n", "Z3, K/H ≈ Z2, and H/{()} ≈ Z2.
\r\n", "So the composition factors are Z2, Z3, Z2, and Z2, which are all simple groups, as we \r\n", "would expect.S4 ⊇ A4 ⊇ K ⊇ B ⊇ {( )}
\r\n", "Even though this is a different composition series, the composition factors are isomorphically the same. Will this happen all of the time? To show that it will, we \r\n", "first need the following lemmas:\r\n", "\r\n", "\r\n", "\r\n", "LEMMA 8.1X ∩ (Y·Z) = Y·(X ∩ Z) = (X ∩ \r\n", "Z)·Y.
\r\n", "\r\n", "Click here for the proof.\r\n", "\r\n", "\r\n", "\r\n", "Lemma 8.2(X·Z)/(Y·Z) ≈ X/(X ∩(Y·Z)).
\r\n", "\r\n", "Click here for the proof.\r\n", "\r\n", "\r\n", "We are now ready to show that any two composition series for a group are related. We do this by proving a theorem that is true for any two subnormal series, and then \r\n", "apply that theorem to a composition series.\r\n", "\r\n", "\r\n", "\r\n", "THEOREM 8.1: The Refinement TheoremG = A0 ⊇ A1 ⊇ A2 ⊇ \r\n", "⋯ ⊇ An = {e},
\r\n", "and\r\n", "G = B0 ⊇ B1 ⊇ B2 ⊇ \r\n", "⋯ ⊇ Bm = {e},
\r\n", "where each Ai is a normal subgroup of Ai−1, and each Bj is a normal subgroup \r\n", "of Bj−1. Then it is possible to refine both series by inserting the subgroups\r\n", "Ai−1 = Ai,0 ⊇ Ai,1 ⊇ \r\n", "Ai,2 ⊇ ⋯ ⊇ Ai,m = Ai, i = 1, 2, … n,
\r\n", "Bj−1 = Bj,0 ⊇ Bj,1 ⊇ \r\n", "Bj,2 ⊇ ⋯ ⊇ Bj,n = Bj, j = 1, 2, … m,
\r\n", "in such a way that\r\n", "Ai,j−1/Ai,j ≈ \r\n", "Bj,i−1/Bj,i.
\r\n", "\r\n", "Click here for the proof.\r\n", "\r\n", "\r\n", "If we now apply the refinement theorem to two composition series we find that the composition factors will be the same.\r\n", "\r\n", "\r\n", "\r\n", "THEOREM 8.2: The Jordan-Hölder TheoremG = A0 ⊇ A1 ⊇ A2 ⊇ \r\n", "⋯ ⊇ An = {e},
\r\n", "and\r\n", "G = B0 ⊇ B1 ⊇ B2 ⊇ \r\n", "⋯ ⊇ Bm = {e}
\r\n", "be two composition series for G. Then n = m, and the composition factors Ai−1/Ai \r\n", "are isomorphic to the composition factors Bj−1/Bj in some order.S5 ⊃ A5 ⊃ {( )}, S5/A5 ≈ \r\n", "Z2, A5/{( )} ≈ A5.
\r\n", "Since Z2 and A5 are both simple groups, this is a composition series, and the composition factors of S5 are \r\n", "Z2 and A5.{ x-1·y-1·x·y | x ∈ \r\n", "H and y ∈ K }.
\r\n", "Will this set form a group? Unfortunately, not always.x-1·y-1·x·y | \r\n", "( ) | \r\n", "(2 3 4) | \r\n", "(2 4 3) | \r\n", "|
| | \r\n", "||||
( ) | \r\n", "| | \r\n", "( ) | \r\n", "( ) | \r\n", "( ) | \r\n", "
(1 2) | \r\n", "| | \r\n", "( ) | \r\n", "(1 4 2) | \r\n", "(1 3 2) | \r\n", "
{( ), (1 3 2), (1 4 2)}.
\r\n", "This is not a subgroup.{ x-1·y-1·x·y | x ∈ \r\n", "H and y ∈ K }.
\r\n", "\r\n", "Although this definition circumvents the problem that the set of commutators do not always form a group, it creates difficulty in proving some of the theorems about \r\n", "the mutual commutator subgroups. This is because whenever u is in [H, K] we cannot say \r\n", "that u = x-1·y-1·x·y for some x in H and some y \r\n", "in K. Rather, we have to write\r\n", "u = u1·u2 ⋯ un,
\r\n", "where each ui = \r\n", "xi-1·yi-1·xi·yi. Yet in spite of this \r\n", "difficulty, we will be able to discover some remarkable properties of the mutual commutator groups.G ⊇ G′ ⊇ G′′ ⊇ G′′′ ⊇ ⋯.
\r\n", "This is called the derived series for the group G. The derived series is in fact a subnormal series as long as the groups keep getting smaller and \r\n", "smaller until they finally get to the trivial subgroup {e}. Will this always happen?A5 ⊇ A5 ⊇ A5 ⊇ A5 ⊇ ⋯
\r\n", "which never gets to {e}.G ⊇ G′ ⊇ G′′ ⊇ G′′′ ⊇ ⋯.
\r\n", "includes the trivial group in a finite number of steps. If the derived series never reaches the trivial group, G is said to be insoluble.(H·N/N)′ = (H′·N)/N.
\r\n", "\r\n", "Click here for the proof.\r\n", "\r\n", "\r\n", "With this simple lemma we will be able to show the relationship with a solvable group to its subgroups and quotient groups.\r\n", "\r\n", "\r\n", "\r\n", "PROPOSITION 8.3G = G0 ⊇ G1 ⊇ G2 ⊇ \r\n", "⋯ ⊇ Gn = {e}
\r\n", "is a polycyclic series if the quotient groups Gi−1/Gi are all cyclic groups. The number n is \r\n", "called the length of the polycyclic series.G = G0 ⊇ G1 ⊇ G2 ⊇ \r\n", "⋯ ⊇ Gn = {e},
\r\n", "we will begin by defining Gn, the trivial group, and then define Gi−1 in terms of Gi. Thus, \r\n", "after n steps, we will have defined the group G into Sage.G0 = Q ⊃ G1 = {1, i, −1, −i} ⊃ \r\n", "G2 = {1}.
\r\n", "Since this is a series of length 2, we will need 2 generators. We begin by defining G2, the trivial group:G0 = S4 ⊇ G1 = \r\n", "A4 ⊇ G2 = K ⊇ G3 = H ⊇ G4 = {( )}
\r\n", "to enter this group into Sage as a polycyclic group.{1, L, M, N, O, P, Q, R, S, T, U, V, \r\n", "W, X, Y, Z}.
\r\n", "Suppose we are given the following multiplication table:\r\n", "\r\n", "The mystery group A:
\r\n", "· | \r\n", "1 | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "S | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "|
| | \r\n", "|||||||||||||||||
1 | \r\n", "1 | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "S | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "|
Z | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "1 | \r\n", "T | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "S | \r\n", "L | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "|
Y | \r\n", "Y | \r\n", "X | \r\n", "1 | \r\n", "Z | \r\n", "U | \r\n", "T | \r\n", "W | \r\n", "V | \r\n", "Q | \r\n", "P | \r\n", "S | \r\n", "R | \r\n", "M | \r\n", "L | \r\n", "O | \r\n", "N | \r\n", "|
X | \r\n", "X | \r\n", "1 | \r\n", "Z | \r\n", "Y | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "W | \r\n", "P | \r\n", "S | \r\n", "R | \r\n", "Q | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "O | \r\n", "|
W | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "S | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "1 | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "|
V | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "W | \r\n", "P | \r\n", "S | \r\n", "R | \r\n", "Q | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "O | \r\n", "X | \r\n", "1 | \r\n", "Z | \r\n", "Y | \r\n", "|
U | \r\n", "U | \r\n", "T | \r\n", "W | \r\n", "V | \r\n", "Q | \r\n", "P | \r\n", "S | \r\n", "R | \r\n", "M | \r\n", "L | \r\n", "O | \r\n", "N | \r\n", "Y | \r\n", "X | \r\n", "1 | \r\n", "Z | \r\n", "|
T | \r\n", "T | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "S | \r\n", "L | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "1 | \r\n", "|
S | \r\n", "S | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "1 | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "|
R | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "S | \r\n", "L | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "1 | \r\n", "T | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "|
Q | \r\n", "Q | \r\n", "P | \r\n", "S | \r\n", "R | \r\n", "M | \r\n", "L | \r\n", "O | \r\n", "N | \r\n", "Y | \r\n", "X | \r\n", "1 | \r\n", "Z | \r\n", "U | \r\n", "T | \r\n", "W | \r\n", "V | \r\n", "|
P | \r\n", "P | \r\n", "S | \r\n", "R | \r\n", "Q | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "O | \r\n", "X | \r\n", "1 | \r\n", "Z | \r\n", "Y | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "W | \r\n", "|
O | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "1 | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "S | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "|
N | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "0 | \r\n", "X | \r\n", "1 | \r\n", "Z | \r\n", "Y | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "W | \r\n", "P | \r\n", "S | \r\n", "R | \r\n", "Q | \r\n", "|
M | \r\n", "M | \r\n", "L | \r\n", "O | \r\n", "N | \r\n", "Y | \r\n", "X | \r\n", "1 | \r\n", "Z | \r\n", "U | \r\n", "T | \r\n", "W | \r\n", "V | \r\n", "Q | \r\n", "P | \r\n", "S | \r\n", "R | \r\n", "|
L | \r\n", "L | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "1 | \r\n", "T | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "S | \r\n", "
A ⊃ {1, Y, S, Q, Z, X, R, P} ⊃ \r\n", "{1, Y ,S, Q} ⊃ {1, Y} ⊃ {1}.
\r\n", "Each quotient group is isomorphic to Z2. Certainly this series would do, but it would involve 4 generators. Is there a shorter polycyclic \r\n", "series?{{1 ,Z, Y, X}, {W, V, U, T}, \r\n", "{S, R, Q, P}, {O, N, M, L}}.
\r\n", "Thus, {1, Z, Y, X} is a normal subgroup of A. Also notice that {W, V, U, T} generates the \r\n", "quotient group. Thus, both the subgroup and the quotient group are isomorphic to Z4. Therefore, we have a much shorter polycyclic series:\r\n", "G0 = A ⊃ G1 = {1, Z, Y, X} ⊃ \r\n", "G2 = {1}.
\r\n", "By using this series, we need only two generators, a and b. Since G1/G2 has two generators, {Z} and \r\n", "{X}, we can let b represent either element, say b = Z. Then b4 = Z4 is \r\n", "in G2 = {1}, and so we have the definitiony·y·x → y·x·x·y·y \r\n", "→ x·x·y·y·x·y·y → \r\n", "x·x·y·x·x·y·y·y·y →\r\n", "x·x·x·x·y·y·x·y·y·y·y → ⋯
\r\n", "creating longer and longer expressions and never stopping. The result is that Mathematica will go into an "infinite loop." The problem is not that \r\n", "the group does not exist; in fact Sage was able to find a group of order 24 for which there are elements x and y such \r\n", "that x3 = e, y6 = e, and y·x = x2·y2. (See Problem 14.) The \r\n", "above infinite loop stems from trying to define this group in terms of subgroups that are not normal subgroups.G = G0 ⊇ G1 ⊇ G2 ⊇ \r\n", "⋯ ⊇ Gn = {e}
\r\n", "be a polycyclic series for G. If the group is defined in Mathematica or Sage using n generators and the procedure described above, \r\n", "then Mathematica will simplify any combination of generators to a point where no further reductions are possible.Z2 × Z3 × Z3 × Z3 × \r\n", "Z3.
\r\n", "The center of the group is certainly a normal subgroup, and includes all actions that return the edges to their original positions. What if we considered the set of \r\n", "actions that return all of the corners to their original place? This certainly would be a subgroup, which we will call E. Let us show that E is \r\n", "a normal subgroup of the Pyramix™ group. If x is an element of E, and y is a general element, say y rotates the front \r\n", "corner n degrees. Then y·x·y-1 rotates the front corner n + 0 + (−n) = 0 \r\n", "degrees. So the front corner returns to its original position. The same is true for the other 3 corners, and \r\n", "so y·x·y-1 fixes all 4 corners. Thus, E is a normal subgroup.E × K ≈ E × Z3 × Z3 × \r\n", "Z3 × Z3.
\r\n", "Therefore, if we can find the structure of the subgroup E, we will have found the structure of the entire Pyramix™ group.f·r·f·r·r·f·r·f·r·r
\r\n", "we could rotate the front corner until it was in position. We could then do the same for the other three corners, and the puzzle would be solved.\r\n", "H ≈ Z2 × Z2 × Z2 × Z2 × Z2.
\r\n", "Now that we know the structure of the normal group H, can we find the structure of the quotient group? First, suppose we made the corners disappear on our \r\n", "puzzle again.f·b·f·f·b·b
\r\n", "puts the top edge piece into the far right position. Finally, we rotate the front corner to place any of the remaining three edge pieces into the top \r\n", "position. Therefore, there are at least 6·5·4·3 = 360 elements of E/H, so\r\n", "E/H ≈ A6.
\r\n", "\r\n", "This raises a natural question. Is E isomorphic to a semi-direct product of H by A6? To see that it is, we need to find a copy \r\n", "of A6 inside of E which contains no elements of H besides the identity. That is, we need to find a subgroup Y of actions \r\n", "which will allow us to rearrange the six edge pieces into any even permutation, but which will not allow us to reverse an edge piece. Notice that when we were showing \r\n", "that we could move four of the six pieces to prescribed positions, we only rotated the front and back corners, except in placing the bottom edge piece. That is, once \r\n", "the bottom piece was in place, the other five could be put into any even permutation using only the moves f and b. However, there is no way to reverse \r\n", "one of the edge pieces using only these two commands. It is not hard to find a third sequence of moves that changes the bottom edge without reversing any of \r\n", "them. The sequence r·f·f·r·r·f gives one example. Try this yourself.M = [ f, b, r·f·f·r·r·f ]
\r\n", "gives us a group isomorphic to A6. Since it is impossible to reverse any edges with the elements of M, the intersection \r\n", "of M and H is the identity. Every arrangement of the edges can be obtained by first putting all of the edges into position, and then reversing \r\n", "several edges. Thus, E = M·H. Therefore by the semi-direct product theorem (6.3), E is isomorphic to a semi-direct product \r\n", "of H by K. If we let ϕ represent the homomorphism from K to Aut(H), we have that\r\n", "E ≈ (Z2 × Z2 × \r\n", "Z2 × Z2 × Z2) ⋊ϕ A6.
\r\n", "\r\n", "\r\n", "Unfortunately, this representation of E depends on the homomorphism ϕ from A6 to \r\n", "Aut(Z2 × Z2 × Z2 × Z2 × Z2). Let us try to \r\n", "find a representation of E that does not require additional knowledge. So instead, we will express E in terms of the wreath product.G Wr H
\r\n", "as the semi-direct product Gn ⋊ϕ H, where Gn denotes the direct product of G with itself n times, and for σ ∈ H, we define ψσ : Gn → Gn by\r\n", "ψσ(g1, g2, …, gn) = \r\n", "(gσ₋₁(1), gσ₋₁(2), … gσ₋₁(n)).
\r\n", "We explored the wreath product in Problems 13 through 16 of §6.4. In these problems, we demonstrated that ψ is a homomorphism \r\n", "from H to Aut(Gn), so the wreath product is a group of size |G|n·|H|.(Z2 × Z2 × Z2 × \r\n", "Z2 × Z2 × Z2) ⋊ϕ A6,
\r\n", "which is similar to, but twice as large, as E. In fact, it is not too hard to see the correlation. If we considered the 6 edges of the puzzle being able to be flipped independently, then the group of all edge flips would be (Z2)6. But then we can permute the edges with any even permutation. The wreath product combines the actions of the edge permutations with the edge flips. Thus, E is isomorphic to a subgroup of Z2 Wr A6. In \r\n", "fact, it is a normal subgroup, since it contains half of the elements.(Z2 Wr A6)′ × Z3 × Z3 × Z3 × Z3.
\r\n", "We can use Sage to analyze this group, by analyzing (Z2 Wr A6)′. First we consider the subgroup H, which is the subgroup of flipping an even number of edges. We can represent the edges by disjoint transpositions." ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "H = Group( C(1,2)*C(3,4), C(3,4)*C(5,6), C(5,6)*C(7,8), C(7,8)*C(9,10), C(9,10)*C(11,12) )" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "len(H)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "Next, we consider the subgroup generated of even permutations of the cycles, without flipping them. This subgroup is generated by a three cycle and five cycle of edges." ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "M = Group( C(1,3,5)*C(2,4,6), C(3,5,7,9,11)*C(4,6,8,10,12) )" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "len(M)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "We now can combine this subgroups, to form the whole group." ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "G = H * M" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "len(G)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "This group is far too large to display, even with integer representation. However, we can determine how many elements there are of a given order, by computing \r\n", "Rk(G) for various k.1 | \r\n", "element of order 1, | \r\n", "
391 | \r\n", "elements of order 2, | \r\n", "
800 | \r\n", "elements of order 3, | \r\n", "
2520 | \r\n", "elements of order 4, | \r\n", "
2304 | \r\n", "elements of order 5, | \r\n", "
1760 | \r\n", "elements of order 6, | \r\n", "
1440 | \r\n", "elements of order 8, | \r\n", "
2304 | \r\n", "elements of order 10, | \r\n", "
11520 | \r\n", "elements total. | \r\n", "
(Z2 Wr A6)′ × Z3 × Z3 × Z3 × Z3.
\r\n", "allows us to analyze the Pyraminx group.l = (8 21 16)(9 22 17)(10 23 18) f = (1 7 13)(2 8 14)(6 12 18) and b = \r\n", "(2 19 10)(3 20 11)(4 21 12).
\r\n", "\r\n", "We can enter these into Sage.l-1·b·f·l-1·b·f·l-1·b·f | \r\n", "flip all six edges | \r\n", "
f·b·r-1·l·r·b-1 | \r\n", "flip two front edges | \r\n", "
b·l·b·r·l·r-1·l-1·b | \r\n", "flip top & bottom edges | \r\n", "
f·r·l-1·b·l·r-1 | \r\n", "flip top & front left edges | \r\n", "
r·l-1·b·l·r-1·f | \r\n", "flip top & front right edges | \r\n", "
r·b·r·l·b·l-1·b-1·r | \r\n", "flip left rear and front right edges | \r\n", "
l·r·l·b·r·b-1·r-1·l | \r\n", "flip right rear and front left edges | \r\n", "
r·b·l-1·f·l·b-1 | \r\n", "flip bottom & front right edges | \r\n", "
l·b·f-1·r·f·b-1 | \r\n", "flip bottom & front left edges | \r\n", "
b·r·f-1·l·f·r-1 | \r\n", "flip top & left rear edges | \r\n", "
b·l·r-1·f·r·l-1 | \r\n", "flip top & right rear edges | \r\n", "
b·f·l-1·r·l·f-1 | \r\n", "flip rear two edges | \r\n", "
l·f·r-1·b·r·f-1 | \r\n", "flip bottom & left rear edges | \r\n", "
r·f·b-1·l·b·f-1 | \r\n", "flip bottom & right rear edges | \r\n", "
l·r·b-1·f·b·r-1 | \r\n", "flip two left hand edges | \r\n", "
r·l·f-1·b·f·l-1 | \r\n", "flip two right hand edges | \r\n", "
f·r·f·r-1·f·r·f·r-1 | \r\n", "rotate front corner 120° clockwise | \r\n", "
l·r·l·r-1·l·r·l·r-1 | \r\n", "rotate left corner 120° clockwise | \r\n", "
r·b·r·b-1·r·b·r·b-1 | \r\n", "rotate right corner 120° clockwise | \r\n", "
b·r·b·r-1·b·r·b·r-1 | \r\n", "rotate back corner 120° clockwise | \r\n", "
((Z2 Wr A6)′ × Z3 × \r\n", "Z3 × Z3 × Z3) ⊃ (Z2 × Z2 × \r\n", "Z2 × Z2 × Z2 × Z3 × Z3 × \r\n", "Z3 × Z3) ⊃ (Z3 × Z3 × \r\n", "Z3 × Z3) ⊃ {e}.
\r\n", "This is not a composition series, but it is easy to see how the series can be expanded to make a composition series. Notice that our first step in solving the puzzle \r\n", "rids us of the A6 factor, bringing the puzzle to a combination that is in a abelian subgroup. The second step in solving the puzzle corresponds \r\n", "to bringing the puzzle into a combination which is within the subgroup Z3 × Z3 × \r\n", "Z3 × Z3. The third step used four phases for the four corners to bring the puzzle to the identity element, the solved \r\n", "puzzle.360·2·2·2·2·2·3·3·3·3 = 933,120 elements.
\r\n", "Gk−1 ⊇ H ⊇ Gk,
\r\n", "where H is a normal subgroup of Gk−1 and Gk is a normal subgroup of H. Then by \r\n", "Lemma 4.5, H/Gk will be a normal subgroup of Gk−1/Gk, and since H is \r\n", "neither Gk−1 nor Gk, we have a proper normal \r\n", "subgroup of Gk−1/Gk.Y·(X ∩ Z) ⊆ X ∩ (Y·Z).
\r\n", "All we need to do is prove the inclusion in the other direction. Suppose that x ∈ X ∩(Y·Z). Then x is \r\n", "in X, and can also be written as x = y·z, where y is in Y, and z is in Z. But \r\n", "then z = y-1·x would be in both X and Z. Thus,\r\n", "x = y·(y-1·x) ∈ Y·(X ∩ Z).
\r\n", "Therefore, we have inclusions in both directions, so\r\n", "Y·(X ∩ Z) = X ∩ (Y·Z).
\r\n", "So far, we haven't used the fact that Y·Z = Z·Y. By Lemma 4.2, Y·Z is a subgroup \r\n", "of G, and so the intersection of X with Y·Z is a subgroup of G. So by Lemma 4.2 again, we have\r\n", "Y·(X ∩ Z) = (X ∩ Z)·Y.
\r\n", "\r\n", "Return to text\r\n", "\r\n", "(x·w)·(y·z)·(x·w)-1 = \r\n", "x·(y·x-1·x·y-1)·w·y·z·w-1·x-1 = \r\n", "(x·y·x-1)·(x·(y-1·w·y)·z·w-1·x-1).
\r\n", "Now, x·y·x-1 is in Y, since Y is a normal subgroup \r\n", "of X. Likewise, y-1·w·y is in Z, since y is \r\n", "in G. Then (y-1·w·y)·z·w-1 is in Z, and \r\n", "so x·(y-1·w·y)·z·w-1·x-1 is \r\n", "in Z, since x is \r\n", "in G. Therefore, \r\n", "(x·w)·(y·z)·(x·w)-1 ∈ \r\n", "Y·Z,
\r\n", "and so Y·Z is a normal subgroup of X·Z.(X·Z)/(Y·Z) = (X·K)/K ≈ \r\n", "X/(X ∩ K) = X/(X ∩ (Y·Z)).
\r\n", "\r\n", "Return to text\r\n", "\r\n", "Ai,j = (Ai−1 ∩ \r\n", "Bj)·Ai and Bj,i = (Bj−1 ∩ \r\n", "Ai)·Bj.
\r\n", "To see that these fit the conditions we need, we first want to show that these are groups. Note that both\r\n", "X = (Ai−1 ∩ Bj−1) and Y \r\n", "= (Ai−1 ∩ Bj)
\r\n", "are subgroups of Ai−1, Y is a subgroup of X, and Z = Ai is a normal subgroup \r\n", "of Ai−1.Ai,j−1/Ai,j = \r\n", "(X·Z)/(Y·Z) ≈ X/(X ∩ (Y·Z)).
\r\n", "Now Lemma 8.1 comes into use. Since Y is a subgroup of X,\r\n", "X ∩ (Y·Z) = Y·(X ∩ Z) = \r\n", "(Ai−1 ∩ Bj)·(Ai−1 ∩ \r\n", "Bj−1 ∩ Ai) = \r\n", "(Ai−1 ∩ Bj)·(Ai ∩ Bj−1) = \r\n", "(Ai ∩ Bj−1)·(Ai−1 ∩ Bj).
\r\n", "Thus,\r\n", "Ai,j−1/Ai,j ≈ \r\n", "(Ai−1 ∩ Bj−1)/[(Ai−1 ∩ \r\n", "Bj)·(Ai ∩ Bj−1)].
\r\n", "By switching the roles of the two series we find by the exact same argument that \r\n", "Bj,i−1/Bj,i ≈ \r\n", "(Bj−1 ∩ Ai−1)/[(Bj−1 ∩ \r\n", "Ai)·(Bj ∩ Ai−1)].
\r\n", "Notice that these are exactly the same thing, so\r\n", "Ai,j−1/Ai,j ≈ \r\n", "Bj,i−1/Bj,i.
\r\n", "\r\n", "Return to text\r\n", "\r\n", "g·u·g-1 = \r\n", "(g·u1·g-1)·(g·u2·g-1) ⋯ \r\n", "(g·un·g-1),
\r\n", "and\r\n", "g·xi-1·yi-1·xi·yi·g-1 = \r\n", "(g·xi-1·g-1)·(g·yi-1·g-1)·(g·xi·g-1)·(g·yi·g-1) = \r\n", "[ g·xi·g-1, g·yi·g-1 ].
\r\n", "If H and K are both normal subgroups of G, then g·xi·g-1 is in H, and \r\n", "g·yi·g-1 is in K. Thus, \r\n", "[ g·xi·g-1, g·yi·g-1 ] is \r\n", "in [H, K].ϕ(x-1·y-1·x·y) = \r\n", "ϕ(x)-1·ϕ(y)-1·ϕ(x)·ϕ(y) = \r\n", "e.
\r\n", "so ϕ(x)·ϕ(y) = ϕ(y)·ϕ(x). Since ϕ is surjective, \r\n", "we see that G/G′ is abelian.\r\n", "x-1·N·y-1·N·x·N·y·N = \r\n", "x-1·N·x·N·y-1·N·y·N =\r\n", "N·N = N.
\r\n", "Thus, x-1·y-1·x·y is in N for all x and y in G. Since \r\n", "G′ is generated by all such elements, G′ is contained in N.G = G0 ⊃ G1 ⊃ G1 ⊃ \r\n", "⋯ ⊃ Gn = {e}.
\r\n", "Since G0/G1 is an abelian group, we have from Lemma 8.3 that G′ is contained in G1. But \r\n", "since G1/G2 is also abelian, by Lemma 8.2 we have G1′ is in G2, and so\r\n", "G′′ ⊆ G1′ ⊆ G2.
\r\n", "Proceeding in this way we find that the nth derived group, G(n), must be contained in Gn = {e}. Thus, \r\n", "the derived series produced the trivial group in at most n steps, so G is solvable.G ⊇ G′ ⊇ G′′ ⊇ G′′′ ⊇ ⋯ \r\n", "⊇ G(n) = {e}.
\r\n", "If G(n) is the first term in the derived series equal to {e}, then this subnormal series can never repeat any two \r\n", "subgroups. Because this is a finite group, there are only a finite number of ways this series could be refined without repeating subgroups. Thus, by the refinement \r\n", "theorem, we can refine this to produce a composition series. Because each of the quotient groups of the derived series is abelian, the quotient groups of the refinement \r\n", "must also be abelian. But by Proposition 8.1, the quotient groups of the composition series must be nontrivial simple groups. The only nontrivial simple groups that \r\n", "are abelian are the cyclic groups of prime order. Thus, the quotient groups for this composition series are cyclic groups of prime order. By the Jordan-Hölder \r\n", "theorem (8.2), all composition series are the same way.(h·n·N)-1·(k·m·N)-1·(h·n·N)·(k·m·N) = \r\n", "h-1·k-1·h·k·N.
\r\n", "But these elements are also in (H′·N)/N. In fact, (H′·N)/N is generated by the elements \r\n", "of the form h-1·k-1·h·k·N. Therefore, the \r\n", "groups (H·N/N)′ and (H′·N)/N are equal.H′ ⊆ G′ ⟹ H′′ ⊆ \r\n", "G′′ ⟹ H′′′ ⊆ G′′′ ⋯.
\r\n", "Thus, since G(n) = {e} for some n, H(n) = {e}, and H is solvable.(G/H)′′ | \r\n", "= | \r\n", "(G′·H/H)′ = (G′′·H)/H, | \r\n", "
(G/H)′′′ | \r\n", "= | \r\n", "(G′′·H/H)′ = (G′′′·H)/H, …. | \r\n", "
(G/H)(n) = (G(n)·H)/H
\r\n", "would be the identity group H/H. Therefore, G/H is a solvable group.u1, u2, u3, …
\r\n", "where each expression ui is formed from a substitution of either of the two categories applied to ui−1. Note that \r\n", "the ui's do not represent elements of G, but rather expressions that are products of the \r\n", "generators {g1, g2, … gn}. In fact, all of the ui's are different ways of \r\n", "expressing the same element of G. If such an infinite sequence of expressions existed, the computer would have the potential of running into an infinite \r\n", "loop.The mystery group B:
\r\n", "· | \r\n", "1 | \r\n", "I | \r\n", "J | \r\n", "K | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "S | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "|
| | \r\n", "|||||||||||||||||
1 | \r\n", "1 | \r\n", "I | \r\n", "J | \r\n", "K | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "S | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "|
I | \r\n", "I | \r\n", "L | \r\n", "K | \r\n", "N | \r\n", "M | \r\n", "1 | \r\n", "O | \r\n", "J | \r\n", "Q | \r\n", "T | \r\n", "S | \r\n", "V | \r\n", "U | \r\n", "P | \r\n", "W | \r\n", "R | \r\n", "|
J | \r\n", "J | \r\n", "O | \r\n", "L | \r\n", "I | \r\n", "N | \r\n", "K | \r\n", "1 | \r\n", "M | \r\n", "R | \r\n", "W | \r\n", "T | \r\n", "Q | \r\n", "V | \r\n", "S | \r\n", "P | \r\n", "U | \r\n", "|
K | \r\n", "K | \r\n", "J | \r\n", "M | \r\n", "L | \r\n", "O | \r\n", "N | \r\n", "I | \r\n", "1 | \r\n", "S | \r\n", "R | \r\n", "U | \r\n", "T | \r\n", "W | \r\n", "V | \r\n", "Q | \r\n", "P | \r\n", "|
L | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "1 | \r\n", "I | \r\n", "J | \r\n", "K | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "S | \r\n", "|
M | \r\n", "M | \r\n", "1 | \r\n", "O | \r\n", "J | \r\n", "I | \r\n", "L | \r\n", "K | \r\n", "N | \r\n", "U | \r\n", "P | \r\n", "W | \r\n", "R | \r\n", "Q | \r\n", "T | \r\n", "S | \r\n", "V | \r\n", "|
N | \r\n", "N | \r\n", "K | \r\n", "1 | \r\n", "M | \r\n", "J | \r\n", "O | \r\n", "L | \r\n", "I | \r\n", "V | \r\n", "S | \r\n", "P | \r\n", "U | \r\n", "R | \r\n", "W | \r\n", "T | \r\n", "Q | \r\n", "|
O | \r\n", "O | \r\n", "N | \r\n", "I | \r\n", "1 | \r\n", "K | \r\n", "J | \r\n", "M | \r\n", "L | \r\n", "W | \r\n", "V | \r\n", "Q | \r\n", "P | \r\n", "S | \r\n", "R | \r\n", "U | \r\n", "T | \r\n", "|
P | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "S | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "1 | \r\n", "I | \r\n", "J | \r\n", "K | \r\n", "|
Q | \r\n", "Q | \r\n", "T | \r\n", "S | \r\n", "V | \r\n", "U | \r\n", "P | \r\n", "W | \r\n", "R | \r\n", "M | \r\n", "1 | \r\n", "O | \r\n", "J | \r\n", "I | \r\n", "L | \r\n", "K | \r\n", "N | \r\n", "|
R | \r\n", "R | \r\n", "W | \r\n", "T | \r\n", "Q | \r\n", "V | \r\n", "S | \r\n", "P | \r\n", "U | \r\n", "N | \r\n", "K | \r\n", "1 | \r\n", "M | \r\n", "J | \r\n", "O | \r\n", "L | \r\n", "I | \r\n", "|
S | \r\n", "S | \r\n", "R | \r\n", "U | \r\n", "T | \r\n", "W | \r\n", "V | \r\n", "Q | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "I | \r\n", "1 | \r\n", "K | \r\n", "J | \r\n", "M | \r\n", "L | \r\n", "|
T | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "S | \r\n", "1 | \r\n", "I | \r\n", "J | \r\n", "K | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "|
U | \r\n", "U | \r\n", "P | \r\n", "W | \r\n", "R | \r\n", "Q | \r\n", "T | \r\n", "S | \r\n", "V | \r\n", "I | \r\n", "L | \r\n", "K | \r\n", "N | \r\n", "M | \r\n", "1 | \r\n", "O | \r\n", "J | \r\n", "|
V | \r\n", "V | \r\n", "S | \r\n", "P | \r\n", "U | \r\n", "R | \r\n", "W | \r\n", "T | \r\n", "Q | \r\n", "J | \r\n", "O | \r\n", "L | \r\n", "I | \r\n", "N | \r\n", "K | \r\n", "1 | \r\n", "M | \r\n", "|
W | \r\n", "W | \r\n", "V | \r\n", "Q | \r\n", "P | \r\n", "S | \r\n", "R | \r\n", "U | \r\n", "T | \r\n", "K | \r\n", "J | \r\n", "M | \r\n", "L | \r\n", "O | \r\n", "N | \r\n", "I | \r\n", "1 | \r\n", "
The mystery group C:
\r\n", "· | \r\n", "1 | \r\n", "F | \r\n", "G | \r\n", "H | \r\n", "I | \r\n", "J | \r\n", "K | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "S | \r\n", "T | \r\n", "|
| | \r\n", "|||||||||||||||||
1 | \r\n", "1 | \r\n", "F | \r\n", "G | \r\n", "H | \r\n", "I | \r\n", "J | \r\n", "K | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "S | \r\n", "T | \r\n", "|
F | \r\n", "F | \r\n", "1 | \r\n", "H | \r\n", "G | \r\n", "J | \r\n", "I | \r\n", "L | \r\n", "K | \r\n", "N | \r\n", "M | \r\n", "P | \r\n", "O | \r\n", "R | \r\n", "Q | \r\n", "T | \r\n", "S | \r\n", "|
G | \r\n", "G | \r\n", "H | \r\n", "1 | \r\n", "F | \r\n", "K | \r\n", "L | \r\n", "I | \r\n", "J | \r\n", "O | \r\n", "P | \r\n", "M | \r\n", "N | \r\n", "S | \r\n", "T | \r\n", "Q | \r\n", "R | \r\n", "|
H | \r\n", "H | \r\n", "G | \r\n", "F | \r\n", "1 | \r\n", "L | \r\n", "K | \r\n", "J | \r\n", "I | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "T | \r\n", "S | \r\n", "R | \r\n", "Q | \r\n", "|
I | \r\n", "I | \r\n", "K | \r\n", "J | \r\n", "L | \r\n", "M | \r\n", "O | \r\n", "N | \r\n", "P | \r\n", "Q | \r\n", "S | \r\n", "R | \r\n", "T | \r\n", "1 | \r\n", "G | \r\n", "F | \r\n", "H | \r\n", "|
J | \r\n", "J | \r\n", "L | \r\n", "I | \r\n", "K | \r\n", "N | \r\n", "P | \r\n", "M | \r\n", "O | \r\n", "R | \r\n", "T | \r\n", "Q | \r\n", "S | \r\n", "F | \r\n", "H | \r\n", "1 | \r\n", "G | \r\n", "|
K | \r\n", "K | \r\n", "I | \r\n", "L | \r\n", "J | \r\n", "O | \r\n", "M | \r\n", "P | \r\n", "N | \r\n", "S | \r\n", "Q | \r\n", "T | \r\n", "R | \r\n", "G | \r\n", "1 | \r\n", "H | \r\n", "F | \r\n", "|
L | \r\n", "L | \r\n", "J | \r\n", "K | \r\n", "I | \r\n", "P | \r\n", "N | \r\n", "O | \r\n", "M | \r\n", "T | \r\n", "R | \r\n", "S | \r\n", "Q | \r\n", "H | \r\n", "F | \r\n", "G | \r\n", "1 | \r\n", "|
M | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "S | \r\n", "T | \r\n", "1 | \r\n", "F | \r\n", "G | \r\n", "H | \r\n", "I | \r\n", "J | \r\n", "K | \r\n", "L | \r\n", "|
N | \r\n", "N | \r\n", "M | \r\n", "P | \r\n", "O | \r\n", "R | \r\n", "Q | \r\n", "T | \r\n", "S | \r\n", "F | \r\n", "1 | \r\n", "H | \r\n", "G | \r\n", "J | \r\n", "I | \r\n", "L | \r\n", "K | \r\n", "|
O | \r\n", "O | \r\n", "P | \r\n", "M | \r\n", "N | \r\n", "S | \r\n", "T | \r\n", "Q | \r\n", "R | \r\n", "G | \r\n", "H | \r\n", "1 | \r\n", "F | \r\n", "K | \r\n", "L | \r\n", "I | \r\n", "J | \r\n", "|
P | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "T | \r\n", "S | \r\n", "R | \r\n", "Q | \r\n", "H | \r\n", "G | \r\n", "F | \r\n", "1 | \r\n", "L | \r\n", "K | \r\n", "J | \r\n", "I | \r\n", "|
Q | \r\n", "Q | \r\n", "S | \r\n", "R | \r\n", "T | \r\n", "1 | \r\n", "G | \r\n", "F | \r\n", "H | \r\n", "I | \r\n", "K | \r\n", "J | \r\n", "L | \r\n", "M | \r\n", "O | \r\n", "N | \r\n", "P | \r\n", "|
R | \r\n", "R | \r\n", "T | \r\n", "Q | \r\n", "S | \r\n", "F | \r\n", "H | \r\n", "1 | \r\n", "G | \r\n", "J | \r\n", "L | \r\n", "I | \r\n", "K | \r\n", "N | \r\n", "P | \r\n", "M | \r\n", "O | \r\n", "|
S | \r\n", "S | \r\n", "Q | \r\n", "T | \r\n", "R | \r\n", "G | \r\n", "1 | \r\n", "H | \r\n", "F | \r\n", "K | \r\n", "I | \r\n", "L | \r\n", "J | \r\n", "O | \r\n", "M | \r\n", "P | \r\n", "N | \r\n", "|
T | \r\n", "T | \r\n", "R | \r\n", "S | \r\n", "Q | \r\n", "H | \r\n", "F | \r\n", "G | \r\n", "1 | \r\n", "L | \r\n", "J | \r\n", "K | \r\n", "I | \r\n", "P | \r\n", "N | \r\n", "O | \r\n", "M | \r\n", "
The mystery group D:
\r\n", "· | \r\n", "1 | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "S | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "X | \r\n", "Y | \r\n", "Z | \r\n", "|
| | \r\n", "|||||||||||||||||
1 | \r\n", "1 | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "S | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "X | \r\n", "Y | \r\n", "Z | \r\n", "|
L | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "1 | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "X | \r\n", "Y | \r\n", "Z | \r\n", "S | \r\n", "|
M | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "1 | \r\n", "L | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "X | \r\n", "Y | \r\n", "Z | \r\n", "S | \r\n", "T | \r\n", "|
N | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "1 | \r\n", "L | \r\n", "M | \r\n", "V | \r\n", "W | \r\n", "X | \r\n", "Y | \r\n", "Z | \r\n", "S | \r\n", "T | \r\n", "U | \r\n", "|
O | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "1 | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "W | \r\n", "X | \r\n", "Y | \r\n", "Z | \r\n", "S | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "|
P | \r\n", "P | \r\n", "Q | \r\n", "R | \r\n", "1 | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "X | \r\n", "Y | \r\n", "Z | \r\n", "S | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "|
Q | \r\n", "Q | \r\n", "R | \r\n", "1 | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Y | \r\n", "Z | \r\n", "S | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "X | \r\n", "|
R | \r\n", "R | \r\n", "1 | \r\n", "L | \r\n", "M | \r\n", "N | \r\n", "O | \r\n", "P | \r\n", "Q | \r\n", "Z | \r\n", "S | \r\n", "T | \r\n", "U | \r\n", "V | \r\n", "W | \r\n", "X | \r\n", "Y | \r\n", "|
S | \r\n", "S | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "1 | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "|
T | \r\n", "T | \r\n", "S | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "1 | \r\n", "R | \r\n", "Q | \r\n", "|
U | \r\n", "U | \r\n", "T | \r\n", "S | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "W | \r\n", "V | \r\n", "Q | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "1 | \r\n", "R | \r\n", "|
V | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "S | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "W | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "1 | \r\n", "|
W | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "S | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "1 | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "|
X | \r\n", "X | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "S | \r\n", "Z | \r\n", "Y | \r\n", "L | \r\n", "1 | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "M | \r\n", "|
Y | \r\n", "Y | \r\n", "X | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "S | \r\n", "Z | \r\n", "M | \r\n", "L | \r\n", "1 | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "O | \r\n", "N | \r\n", "|
Z | \r\n", "Z | \r\n", "Y | \r\n", "X | \r\n", "W | \r\n", "V | \r\n", "U | \r\n", "T | \r\n", "S | \r\n", "N | \r\n", "M | \r\n", "L | \r\n", "1 | \r\n", "R | \r\n", "Q | \r\n", "P | \r\n", "O | \r\n", "