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Adaptive evolution is, to a large extent, a complex combinatorial optimization 
process. Such processes can be characterized as "uphill  walks on rugged fitness 
landscapes".  Concrete examples of fitness landscapes include the distribution of  
any specific functional property such as the capacity to catalyze a specific reaction, 
or bind a specific ligand, in "protein space". In particular, the property might be 
the affinity of all possible antibody molecules for a specific antigenic determinant. 
That affinity landscape presumably plays a critical role in maturation of  the immune 
response. In this process, hypermutation and clonal selection act to select antibody 
V region mutant variants with successively higher affinity for the immunizing antigen. 
The actual statistical structure of affinity landscapes, although knowable, is currently 
unknown. Here, we analyze a class of mathematical models we call NK models. 
We show that these models capture significant features of  the maturation of  the 
immune response, which is currently thought to share features with general protein 
evolution. The NK models have the important property that, as the parameter K 
increases, the "ruggedness" of the NK landscape varies from a single peaked 
"Fujiyama'" landscape to a multi-peaked "badlands"  landscape. Walks to local 
optima on such landscapes become shorter as K increases. This fact allows us to 
choose a value of  K that corresponds to the experimentally observed number of 
mutational "steps", 6-8, taken as an antibody sequence matures. If  the mature 
antibody is taken to correspond to a local optimum in the model, tuning the model 
requires that K be about 40, implying that the functional contribution of  each amino 
acid in the V region is affected by about 40 others. Given this value of K, the model 
then predicts several features of "antibody space" that are in qualitative agreement 
with experiment: (1) The fraction of fitter variants of  an initial "roughed in" germ 
line antibody amplified by clonal selection is about 1-2%. (2) Mutations at some 
sites of the mature antibody hardly affect antibody function at all, but mutations at 
other sites dramatically decrease function. (3) The same "roughed in" antibody 
sequence can "walk" to many mature antibody sequences. (4) Many adaptive walks 
can end on the same local optimum. (5) Comparison of different mature sequences 
derived from the same initial V region shows evolutionary hot spots and parallel 
mutations. All these predictions are open to detailed testing by obtaining monoclonal 
antibodies early in the immune response and carrying out in vitro mutagenesis and 
adaptive hill climbing with respect to affinity for the immunizing antigen. 

I n t r o d u c t i o n  

The  evoca t ive  image ry  c r ea t ed  by  Wr igh t ' s  n o t i o n  o f  an a d a p t i v e  l a n d s c a p e  (Wright ,  
1932) is one  o f  the  mos t  p o w e r f u l  concep t s  in e v o l u t i o n a r y  theory .  The  s imples t  
ve rs ion  o f  his i dea  p ic tu res  a space  o f  geno types ,  each  " n e x t  t o "  those  o t h e r  g e n o t y p e s  
which  differ  by  a s ingle  mu ta t i on ,  a n d  each  a s s igned  a fitness. The  d i s t r i bu t i on  o f  
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the fitness values over the space of genotypes constitutes the fitness landscape. 
Maynard Smith (1970) borrowed Wright's image in defining "protein space" and 
adaptive walks in that space. The space consists of all 20 N proteins, length N, 
arranged such that each protein is a vertex next to all 19N single mutant variants 
obtained by replacing one amino acid at one position by one of the 19 remaining 
possible coded amino acids. Each protein in the space is assigned some "fitness'" 
with respect to a specific property, such as binding a specific ligand, where "fitness" 
can be defined as the affinity of binding. An adaptive walk can be conceived as a 
process which begins at a single protein in the space and passes via ever fitter 
1-mutant variants. Ultimately, such an adaptive walk on a fixed landscape must 
climb to a locally optimal protein, better than all 19N l-mutant variants. These 
ideas can be generalized to walks proceeding via 2-mutant or more distant neighbors, 
or those allowed to pass via less fit neighbors as well. More recently, other authors 
have taken up the idea of protein space, or more generally of sequence space, 
(Ninio, 1979; Eigen, 1985; Schuster, 1986, 1987; Fontana & Schuster, 1987; Kauffman 
& Levin, 1987; Kauffman et al., 1988; Kauffman, 1989 a,b).  

It is clear that the character of such adaptive walks depends upon the actual 
structure of the fitness landscape, whether it is smooth with few adaptive peaks, or 
highly mountainous and muitipeaked. In addition the adaptive process depends 
upon the actual mechanisms of adaptive "flow" by the population: for an asexual 
population these include the mutation rate, and population size. Gillespie 
(1983, 1984) has shown that in the limit where the mutation rate is low and the 
relative fitness differences between less fit and more fit mutant neighbors sufficiently 
great, the general flow of a population over a landscape can be simplified to a 
process where the population as a whole remains fixed at a single "genotype", 
protein, or point in the space for long times then moves as a unit to a fitter 1-mutant 
variant. We use this limiting case of an adaptive walk in this article, because it 
allows us to focus on the statistical structure of rugged adaptive landscapes. 
Nevertheless, the actual flow of a population of maturing B cells on the real affinity 
landscape is very likely to be a more complex process which "spreads out" along 
fitness ridges in the affinity landscape in ways depending upon the details of mutation 
rate, cell population sizes, and fitness differences. Once the statistical structure of 
affinity landscapes are understood, these further issues must also be addressed. 

The actual structure of fitness landscapes in protein space for specific catalytic 
or ligand binding functions is unknown, but increasingly open to direct investigation 
by current genetic engineering and site directed mutagenesis studies. Our aim in 
this article is to discuss further a spin-glass-like model of random epistatic interac- 
tions, called the N K  model, introduced and considered elsewhere, (Kauitman et al., 
1988; Kauffman, 1989a, b). N is the number of "sites" in the model genotype or 
protein, while K is the number of sites whose alternative states, "alleles" or amino 
acids, bear on the fitness contribution of each site. Thus K measures the richness 
of epistatic interactions among sites. 

This model generates a family of increasingly rugged multipeaked landscapes as 
its main parameters are tuned, (Kauffman et al., 1988; Kauitman, 1989a, b). Thus 
as K increases relative to N, landscapes pass from smooth and single peaked to 
jagged and multipeaked. Of course, since protein space is a discrete "sequence 
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space", the fitness values are only defined on this discrete space. The general interest 
in this family of landscapes lies in understanding the implications of the richness 
of epistasis on the expected structure of fitness landscapes. Thus the model can be 
interpreted as a haploid genetic model and used to study the effects of epistasis in 
population genetics. Our particular purpose in the present article is to show that 
the N K  model predicts a number of features of a well known example of rapid 
adaptive protein evolution: maturation of the immune response. 

We wish to contrast our approach, which considers only the statistical structure 
of the landscape, with more familiar theoretical approaches that involve detailed 
simulation of actual protein molecules. We believe we are proposing a kind of 
"statistical mechanics" of the immune response in particular, and protein evolution 
in general. This analogy with physics seems apt, because the theory is motivated 
by a desire to understand the ensemble properties of evolution among proteins even 
at the risk of ignoring important details regarding individual proteins. There are 
two reasons for taking this position, one practical and the other theoretical. First, 
the practical reason: there is an extensive literature which discusses detailed mathe- 
matical models of proteins that include the main chain, electrostatic, van der Waals 
and hydrogen bonding forces, and, perhaps, forces due to interactions with a solvent 
(Karplus & Kusick, 1983; Karplus et ai., 1987; Shenkin et al., 1987). Unfortunately, 
detailed analysis of the kind of adaptive walks in the space of antibodies which we 
propose is computationally intractable on current computers. From a theoretical 
perspective, we need to understand the actual statistical structure of fitness land- 
scapes underlying protein evolution. If simple statistical models such as the N K  
model we discuss predict actual adaptive landscapes in protein evolution, then we 
may hope that the N K  model or improved variants point to the underlying basis 
for the structure of protein adaptive landscapes. Such models may help teach us 
how proteins work and evolve. 

The rest of this paper is laid out as follows: In the first section, we present a more 
detailed discussion of the idea of peptide spaces, which we choose to rename "affinity 
landscapes", to reflect our interest in the binding of antigens by antibodies. This 
leads us to note a number of natural features of mountainous fitness landscapes 
which are open to experimental and theoretical investigation. In the second section 
we discuss the N K  class of mathematical models, and discuss enough of its properties 
to motivate the modeling steps employed subsequently. The third section sketches 
the biological facts regarding the maturation of the immune response. In this section, 
we suggest that this well studied system, during which hypermutation and clonal 
selection amplify V region mutant antibodies with successively higher affinity for 
the immunizing antigen, is a natural testbed for the application of the N K  model 
to protein evolution. The fourth section summarizes the predictions of the model 
and its qualitative agreement with relevant experiments. We conclude with a dis- 
cussion of the significance and limitations of our findings and some suggestions for 
avenues of future investigation. 

The Structure of Affinity Landscapes 

In this section, we set forth the concept of an affinity landscape in more detail. The 
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set of  all 20 N proteins of  length N can be represented as points in an abstract N 
dimensional space in which proteins that differ at exactly one residue are "neigh- 
bors."  Although it is difficult to draw a picture of  such high dimensional  spaces, a 
sense of  their structure can be captured by considering proteins with only two amino 
acids, e.g. alanine and glycine. In Fig. l(a),  all 2 4-- 16 possible peptide sequences 
of  length 4 for these two amino acids are shown, using the representation "1"  for 
alanine and "0"  for glycine. Each vertex in this figure corresponds to a specific 
sequence, e.g. '1101" or "0101". There are also four lines emanat ing from each 
vertex. These lines connect  the vertex with the four other "ne ighbor"  verticies that 
differ from the first by a single amino acid substitution. It is thus clear from the 
figure that the neighbors of  e.g. "0110" are "'1110", "0010", "0100", and "0111". 
Peptide sequences involving all 20 amino acids would be structurally similar, but 
more complicated to draw. Each dimension would have 20 verticies, and each vertex 
would be connected to the 19 others in the same hyperplane.  Because there are N 
hyperplanes,  there are 19N total connections for each vertex. The "protein space"  
construction allows us to specify exactly what we mean by neighboring sequences, 
the minimum number  of  changes to pass from one sequence to another,  etc. We 
also remark in passing that the concept  is very general, and can be used to represent 
entire organisms or other ensembles of  related objects that are "one  mutant  neigh- 
bors"  of  each other. 

0110 0111 

III1 

I 1 0 ~  

oooo   
(a) 

4 6 

0011 ~ 13 

I ~ 14 j /  
- _ -  (b) 

FIG. l(a).  A four-dimensional  "'Boolean hypercube'" showing all 16 possible peptides length four 
comprised of  only two amino acids, alanine = 1, glycine = 0. Each peptide is " 'next" to those which are 
accessible by mutat ing a single amino acid. (b) Each peptide has been assigned,  at random,  a rank order 
fitness, one low, 16 high. Arrows connect  adjacent peptides, and point to peptide or higher fitness. Circles 
surround locai optima in this small peptide space. 

As noted above, we can assign a "fitness" to each protein by measuring its capacity 
to perform a specific function, such as catalyzing a given reaction, binding a given 
ligand, etc. In Fig. l(b),  we have assigned each of  the 16 peptides on the verticies 
with the hypothetical fitness values shown. This assignment gives a rank order to 
the peptides from the worst (1) to the best (16). As we will see, the properties of  
interest in the subsequent discussion depend only on these rank orderings. The 
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adaptive walks we focus on might begin with any of  the 16 peptides and will "s tep"  
to a one mutant neighbor peptide only if the second peptide is fitter (has higher 
rank order) than the first. In Fig. l(b) this is represented by arrows from each peptide 
directed to those 1-mutant neighbors with higher rank order. The sequence of arrows 
connecting a series of adjacent verticies in the Figure represent such a walk. The 
walk must terminate when it reaches a peptide which is fitter than all of  its one 
mutant neighbors. Such a peptide is a local optimum of  the space. In Fig. l(b) three 
of  the 16 peptides are local optima. 

To completely specify the character of the walk, it is necessary to choose a step 
selection mechanism. Two choices are natural. The first is to step to the neighbor 
with the highest fitness. Such walks are called greedy walks. The second involves 
selecting the fitter neighbor at random from among all the fitter 1-mutant neighbors. 
Either of these two is an idealization of  the actual flow of  an adapting population 
on a rugged landscape under  the drive of  mutation and selection. The former roughly 
represents a case where more than a single mutant is encountered in a short time 
period and the fittest variant sweeps the population. The latter roughly represents 
the case considered by Gillespie, when the rate of  finding a fitter variant is low 
compared to selection differences ensuring the rapid establishment of any fitter 
variant, once it is found and present in sufficient numbers to obviate loss by chance 
drift. We will use Gillespie's limiting case and consider fitter 1-mutant variants to 
be chosen at random. 

The simple landscape shown in Fig. 1 (b) has rank order fitness values which were 
assigned at random to the 16 possible peptides in the space. In considering maturation 
of  the immune response the natural measure of  fitness is the affinity with which 
each possible antibody binds the immunizing epitope on the specific antigen with 
respect to which maturation is occurring. Since the diversity of  antibodies in the 
mammalian immune response is thought to be greater than 108 (Honjo et al., 1983; 
Berek et al., 1985), while each antibody is a 1-mutant neighbor of  thousands of  
other antibody molecules, affinity landscapes are far more complex. Yet whatever 
the other cellular mechanisms may be which underlie hypermutation, clonal selec- 
tion, and other parts of  the maturation process, it seems obvious that the unknown 
mountainous structure of  affinity landscapes in antibody space must be central to 
the maturation process. 

The primary virtue of  the landscape construct is that it raises a number of  
theoretically and experimentally accessible questions about the r.ature of  uphill 
walks and the optima that they reach. All are evident in Fig. 1: 

(1) How many local optima exist in a landscape? 
(2) What is the distribution of  optima in the landscape? Are they near one another 

in special subregions of  the space, or randomly scattered? 
(3) What are the lengths of  uphill walks to local optima? 
(4) As an optimum is approached,  the fraction of  fitter neighbors must dwindle 

to 0. How rapidly does the fraction of  fitter neighbors dwindle? 
(5) Because the fraction of neighbors which are fitter dwindles to 0, there is some 

characteristic relation between the number of  mutations " t r ied"  and the 
number  "accepted"  on an adaptive walk. How are the two related? 
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(6) HOW many alternative optima are accessible from a given starting point? Can 
a "low fit" peptide typically climb to all possible local optima, or only a 
small fraction of  those optima? Among the accessible alternative optima, how 
often will each be "hi t"  on independent  adaptive walks from the same starting 
point? 

(7) How many of the possible peptides can climb to any specific optimum, 
including the global opt imum? A small fraction? Almost all? 

(8) Since most adaptive walks end on local optima, what are the fitnesses of  such 
optima and how do they compare with the global optimum in the space? 

(9) The 1-mutant variants of  a local optimum must be less fit than the optimum. 
But do all of  the variants lead to nearly the same loss of  fitness or is there 
high variance indicating precipitous cliffs and gentle ridges in different direc- 
tions in the high dimensional space? 

Previous work (Kauffman & Levin, 1987; Weinberger, 1988; Macken & Perelson, 
1989) has analyzed many of  these questions with respect to the limiting case of fully 
random fitness landscapes in which the fitness of  1-mutant neighbors are assigned 
at random from some fixed underlying distribution. In such an uncorrelated land- 
scape, the fitness of one protein carries no information about the fitness of  its 
1-mutant neighbors. Presumably the real fitness landscapes underlying protein 
evolution are not uncorrelated, although they are correlated in as yet unknown 
ways. In order to begin to gain insight into the structure of  correlated fitness 
landscapes we previously introduced the N K  family of  rugged landscapes, 
(Kauffman et al., 1988; Kauffman, 1989a, b). Our hope is that this family of  correlated 
landscapes, characterized by a few major parameters, may make reasonable predic- 
tions about the actual structure of  antibody affinity landscapes. We present the N K  
family next. 

The NK Model, a Spin Glass-like Model of an Affinity Landscape 

The N K  model is meant to apply to systems of  many, N, parts, where the 
functional contribution of  each part depends upon the "state",  among A alternatives, 
of  that part, and is epistatically affected by an average of  K other parts. In the case 
of  genotypes, the N parts are interpreted as genes, the A alternative states of  a part 
as the alleles, and the K epistatic interactions as functional effects of the alleles at 
other loci upon the fitness contribution of  an allele at a specific locus to overall 
fitness. In the case of  a protein, the N parts are the amino acids in the primary 
sequence, the A states are the 20 possible amino acids, and K measures the average 
number of  other sites in the primary chain whose amino acids bear on the functional 
contribution of  the amino acid at a given site to overall function. In reality, K 
presumably varies from site to site. We treat it as a constant for the moment. In 
short, K is a parameter which measures how richly interconnected the parts of  the 
system are. As we shall see, increasing K from 0 to N-1  increases the number of  
peaks and valleys, and thus the ruggedness of  the corresponding fitness from single 
peaked and smooth to multipeaked and fully uncorrelated. In turn, the ruggedness 
of  the landscape alters the character of adaptive walks towards optima under  
biologically reasonable mutation selection models or any of  a variety of  optimization 



I M M U N E  R E S P O N S E  A N D  NK M O D E L  L A N D S C A P E S  2 1 7  

procedures. In addition to specifying the values of  N, A, and K, it is also necessary 
to specify for each site the specific K among the N which affect it. For example, 
one might wish to assume reciprocity. If  site I affects J, then J affects I. Alternatively, 
reciprocity might not be assumed. More generally, if the sites are located in a linear 
structure such as a chromosome or protein, the K sites bearing on any site might 
be its neighbors, might be chosen at random, or in some non-random spatial 
distribution. 

The central idea used in the N K  model is that the epistatic effects of  the A r 
different combinations of  A alternative states of  the K other sites on the functional 
contribution of  Ath state of  each part are so complex that their statistical features 
can be captured by assigning fitness consequences at random from a specified 
distribution. It is in this sense that the N K  model is a model of  random epistatic 
interactions. Given N, A, K, the distribution of  K among the N assigned to each 
site, and the underlying fitness distribution from which random fitness contributions 
assignments are made, the N K  model is specified and in turn determines an ensemble 
of  fitness landscapes. The model is similar to spin glass models of  disordered 
magnetic materials which have received extensive attention in solid state physics 
recently (Edwards & Anderson, 1975; Sherrington & Kirkpatrick, 1975; Anderson 
1985). In fact, for the case where the K epistatic sites are a site's flanking neighbors, 
the model can rigorously be shown to be a type of  short range spin glass (Binder 
& Young, 1986). Conversely the case in which K = N -1  corresponds to the Derrida 
random energy spin glass (1981), as becomes clear below. 

Consider the simplest version of  the N K  model which assumes that each site has 
only A = two  states. This corresponds to an N locus two allele haploid genetic 
model, or, as in the previous section, to a restricted peptide space in which only 
two of the 20 biologically important  amino acids are present (e.g. alanine = 0 and 
glycine = 1). Each amino acid makes a fitness contribution depending on whether 
it is 0 or 1, and whether the K other amino acids which impinge upon it are 0 or 
1. Thus the fitness contribution of  each of  the N sites depends upon the state at 
K + 1 sites. 

The N K  model assigns a "fitness contribution",  w,- in (0, 1), to each amino acid, 
i, l ~ i ~ N ,  of  the N residue chain such that wi depends on i and K < N other 
bits. Since each amino acid can be 0 or 1, there are 2 tr+~) combinations of  states 
of  the K + 1 amino acids which determine the fitness contribution of  each amino 
acid. The fitness contributions associated with each of  these combinations is assigned 
by selecting an independent  random variable from the uniform distribution on (0, 1). 
This constitutes the "fitness table" for the ith amino acid. There is a different, 
independently generated table for each of  the N amino acids. Then, given any 
"str ing" of  N amino acids, the total fitness of  the string, W, is defined as the average 
of  the fitness contributions of  each part, (i.e. each of  the wi's) each in the context 
of  the K which impinge upon it: 

- -  W i .  (1) W=Ni=I 
Figure 2(a) shows a simple example of  the N K  model for a hypothetical three 

gene system each with two alleles, where the fitness contribution of  each allele at 
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FIG. 2(a). Three adjacent sites in the N K  model, each receives epistatic inputs from the other two; 
N =3,  K =2.  (b) The fitness contribution of each site, ,,~, i =  1, 2, 3, as a function of  the allele, 1 or0,  
at that site and at the K = 2 other sites which bear upon it. The fitness, W, of each genotype, or tripeptide 
is the average of the fitness contributions of the three sites. (c) The fitness of each of  the 2 s= 8 possible 
genotypes, or tripeptides, from 2(b), on the three dimensional Boolean cube representing this small 
sequence space. Note that two local optima exist. 

each locus depends on the alleles at that locus and the two other loci. Equivalently, 
this models a tripeptide with three amino acids, each of  which makes a contribution 
to overall function depending upon the amino acid at that site and the remaining 
two sites. As shown, the resulting fitness tables for the three sites, Fig. 2(b) yield a 
fitness for each of the 23= 8 possible tripeptides, and in turn induce a fitness 
landscape like that in Fig. 1, with adaptive walks to local optima, Fig. 2(c). 

The NK model affords a "tuneably rugged" fitness landscape, since tuning K 
alters how rugged the landscape is. This can be seen from the following: For K = 0, 
each site is independent of all other sites. Except for rare "t ies" which we ignore, 
either the bit value 0 or the bit value 1 is "fitter" than the other; hence, a single 
specific sequence comprised of the fitter bit value in each position is the single, 
global optimum in the fitness landscape. This simple case corresponds to the familiar 
haploid multilocus, two allele additive genetic model found in population genetics 
(see, e.g. Ewens, 1979), The "correlat ion" of  a fitness landscape measures how 
similar the fitness values of  " l -mutan t"  variants in the space of  systems are. 
Specifically, each N bit sequence has N 1-mutant neighbors, obtained by mutating 
any bit to the opposite state. Since such a mutation can only alter fitness by 1/N 
or less in K = 0 landscapes, such landscapes are highly correlated. Furthermore, in 
such landscapes, the statistics of  local hill climbing walks are simply obtained. There 
is a single sequence which is the only and global optimum. Any other sequence is 
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suboptimal, and lies on a connected walk via 1-mutant fitter variants to the global 
optimum by mutating bits from less fit to more fit values. The length of  the walk is 
just the number  of  bits by which the initial sequence differs from the global optimum. 
For a randomly chosen initial string, half the bits will be in their less fit state, hence 
the expected walk length is just N/2. Thus the lengths of  adaptive walks to the 
global opt imum scale linearly with N. Further, at each adaptive step the number 
of  fitter 1-mutant neighbors decreases by one, hence the directions uphill dwindle 
slowly as the global optimum is approached. These properties are in sharp contrast 
to the limit when K -- N-1 .  

The fully connected NK model yields a completely random fitness landscape. 
For K = N - l ,  the fitness contribution of  each site depends on all of  the other sites 
in the sequence and therefore altering any site from one to the other value, 0-1, 

• alters the fitness contribution of each site to a new random value. Thus the fitness 
of  any 1-mutant neighboring sequence is completely random with respect to the 
initial sequence. The landscape is fully random. As was shown in Kauffman & Levin 
(1987), Weinberger (1988), and Macken & Pereison (1989), such random landscapes 
have very many local optima, on average, 2 N / ( N +  1). Walks to optima are short, 
scaling as In N. The expected fraction of  fitter neighbors falls by half at each adaptive 
step. The " t ime" or number of  mutants " t r ied"  to reach a local optimum scales as 
Pc-, the number  of  1-mutant neighbors of  a sequence. Thus the ratio of accepted to 
tried mutations itself scales as (In N / N ) ,  (Kauffman, 1989a, b; Macken & Perelson, 
1989). Only a small fraction of  local optima are accessible from any initial string, 
and only a small fraction of  peptides can climb to any optimum, including the 
global optimum, (Kauffman & Levin, 1987; Kauffman, 1989a). Finally, as N 
increases, and K remains equal to N - l ,  the fitness of local optima fall toward the 
mean of  the space, 0.5, in a kind of  complexity catastrophe. On the other hand, 
simulation results and some analytic work suggests that the fitness of  the global 
opt imum in the space appears not to fall as N increases, (Kauffman, 1989a). In 
short, adaptive walks vary dramatically as the ruggedness of  the landscape varies. 

To gain insight into the behavior of the model for 0 <  K < N-1  with two amino 
acids, we simulated 100 different instances of  uphill walks for each of the N and 
K values given in Tables l(a) ,  (b) and 2(a), (b). Walks started from random initial 
states. These tables show the means and, in parentheses, the standard deviations of  
the maximal fitnesses attained, Tables l(a),  2(a), and mean walk lengths, Tables 
l (b) ,  2(b), for the cases in which the K sites are nearest neighbors, Table l(a) ,(b),  
or randomly chosen, Table 2(a), (b). The largest possible value of  K is N-1 .  For 
simplicity, in these tables we use K = N. Figure 3 shows that as K increases relative 
to N, the fraction of  fitter neighbors at each adaptive step dwindles more rapidly. 
The reciprocal of  the fraction of  fitter neighbors is the expected waiting time to find 
a fitter variant, or equivalently the expected number  of  mutants " t r ied"  to take the 
next adaptive step. 

Note that as N increases for K = N - I ,  the fitness of  optima fall. The complexity 
"catas t rophe"  inexorably sets in. Indeed Tables l(a)  and 2(a), suggest that K need 
only increase linearly with N for this ultimate decline in the fitness of  accessible 
optima to occur. Conversely Tables l(a) and 2(a) indicate that if K remains small 
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TABLE l(a) 
Mean fitness of  local optima attained on walks on 100 different landscapes for 
each different value o f  N and K. Standard deviations shown in brackets. K sites 
bearing on each site were its K/2  flanking neighbors on each side. Circular 
sequences were assumed to avoid boundary effects. Two alternative "'alleles" or 

amino acids are possible at each site 

N 

K 8 16 24 48 96 

0 0 -65 (0"08 )  0-65(0-06) 0.66(0-04) 0'66(0"03) 0-66(0"02) 
2 0.70(0-07) 0"70 (0-04) 0"70 (0-08) 0.70(0"02) 0"71(0-02) 
4 0"70 (0'06) 0.71(0-04) 0"70 (0-04) 0.70(0'03) 0-70 (0-02) 
8 0.66(0"06) 0-68 (0.04) 0-68 (0"03) 0'69 (0"02) 0-68 (0-02) 

16 0-65(0.04) 0'66 (0"03) 0'66 (0"02) 0-66 (0-02) 
24 0'63 (0"03) 0.64 (0-02) 0-64 (0-01) 
48 0.60(0-02) 0-61(0-01) 
96 0"58(0-01) 

TABLE l(b) 
Mean walks lengths to local optima attained on walks on 100 different landscapes 

for each different value of  N and K. K adjacent 

N 

K 8 16 24 48 96 

0 1-5(1.2) 8-6(1.9) 12.6(2.2) 24.3(3.4) 48.8(4.6) 
2 4.1(1.9) 8.1(3.2) 11.2(3.1) 22.5(4.6) 45.2(6.6) 
4 3.2 (1.8) 6.6 (2.5) 9-4 (2.9) 19.3 (3.9) 37.3 (6.1) 
8 2.7 (1.5) 4.7 (2.3) 7.7 (3.0) 15.3 (4.3) 27.7 (5.3) 

16 3.3 (1.7) 4.8 (2.1) 9.6 (3.0) 19.3 (4.2) 
24 3.5 (1.4) 7.4 (3.0) 5.0 (3.9) 
48 3.9 (1.9) 8.9 (3.0) 
96 5.1 (2-4) 

while N increases,  local op t ima  do not  fall in fitness. This  hints  at a cons t ruc t ion  
requ i rement :  as the n u m b e r  of  in terac t ing  parts  in a complex  system increase,  the 

adapt ive  l andscape  will t end  to retain highly fit a nd  accessible local op t ima  if the 

epistatic in te rac t ions  r ema in  low. Note  also that  as K increases relative to N m e a n  
walk lengths to op t ima  decrease.  We use this fact be low in apply  the N K  model  to 
ma tu ra t ion  of  the i m m u n e  response.  Table  3 shows the n u m b e r  of  local op t ima  
found  for different values of  N and  K. An impor t a n t  general  features of  these results 

is that  the basic  s t ructure  of  the l andscape  is qui te  insensi t ive  to whether  the K sites 

affecting each site are its ne ighbors  or ass igned at r andom.  This will recur  in our  
app l i ca t ion  of  the N K  mode l  to ma tu ra t ion  of  the i m m u n e  response.  We c o m m e n t  

that  for the l imit ing case of  K = N - I ,  K = 15, N = 16, the n u m b e r  of  local op t ima  
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TABLE 2(a) 
As in Table l(a), except the K sites bearing on each site were randomly chosen. 

Sequences were not assumed to be circular 

N 

K 8 16 24 48 96 

2 0.70 (0.06) 0.71 (0.04) 0.71 (0.03) 0.71 (0.03) 0-71 (0.02) 
4 0.68 (0.05) 0.71 (0.04) 0.71 (0-04) 0.72 (0.03) 0.72 (0.02) 
8 0-66 (0.06) 0.69 (0.04) 0.69 (0-04) 0.70 (0.02) 0.71 (0.02) 

16 0.65 (0.04) 0-65 (0-03) 0.67 (0.03) 0.68 (0.02) 
24 0-63 (0"03) 0'65 (0'02) 0'66 (0"02) 
48 0"60 (0'02) 0'62 (0"02) 
96 0'58 (0"01) 

TABLE 2(b) 
As  in Table l(b), except the K sites bearing on each site were randomly chosen 

N 

K 8 16 24 48 96 

2 4.4(1.8) 8.1 (2.8) 12.5(3-8) 26.5(5.1) 46.9(6.1) 
4 3.6 (1 '8) 7.3 (2.9) 10.9 (3.3) 22.9 (5.6) 44.5 (7.9) 
8 2.7(1.5) 5.3(2-5) 8.0(3-2) 17-0(4-3) 34.7(6.5) 

16 3.3(1.7) 4.8(2.1) 10.1(3.4) 21.6(4.8) 
24 3.5 (I .4) 7-4 (2-6) 16.0 (4.3) 
48 3-9 (1.9) 9.3 (2.6) 
96 5.1 (2.4) 

encountered appears higher than the predicted 2 N / ( N + I ) .  The reasons for this 
disparity are not clear. 

N K  landscapes have other quite striking properties, most but not all of which 
are quite insensitive to the detailed assumptions of the model, as discussed elsewhere 
(Kauffman, 1989). For example, for A = 2 and K = 2, whether the epistatic sites are 
adjacent or random, the general configuration of  the landscape is very non-random. 
The highest optima are both nearest one another and also have the largest drainage 
basins. The landscape has a Massif  Central. As A and K increase these ordered 
features decay, rapidly with respect to the nearness of high local optima to one 
another, more slowly for the tendency of the highest optima to drain the largest 
region of  the space. Since these features and their implications are described 
elsewhere, (Kauffman, 1989a), we do not comment upon them further here. 

Conclusions for the N Locus Two Allele or Two Amino Acid Case 

The N K  model is a very general approach to understanding complex epistatic 
interactions and their effects upon the structure of correlated but mountainous 
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FIG. 3. Logarithm of the mean number of fitter l -mutant  neighbors at each adapt ive step, plotted 
against the adaptive step, or generation, for the N K  model with N =96,  and fitness values chosen 
uniformly between 0 and 1. As K increases the rate of fall of in the fraction of fitter 1-mutant neighbors 
increases as well. 

TABLE 3 

Number of optima in landscapes 
for different values of N and K, 
K < N. Data ure means of ten 
landscapes, each explored from 

10,000 different initial points 

N 

K 8 16 

2 5 26 
4 15 184 
7 34 - -  
8 - -  1109 

15 - -  4370 

landscapes. The main conclusions to bring away are that increasing K relative to 
N increases the number of local optima, shortens the lengths of walks to optima, 
increases the rate at which fitter neighbors dwindle to 0 along adaptive walks, 
increases the ruggedness of the landscape, reduces the fraction of optima accessible 
from a given point, reduces the number of points which can climb to a given optimum 
and leads to a complexity catastrophe in which accessible optima fall toward the 
mean of the space. All these features presumably reflect the fact that, as K increases, 
more conflicting constraints, or what in spin glass models is called frustration, 
(Anderson, 1985), sets in. 
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While the N K  family of landscapes is of interest and appears to be one useful 
model of correlated fitness landscapes, there may be very many such families of 
landscapes. Ultimately we must be interested in the actual structure of the fitness 
landscapes underlying adaptive protein evolution. We turn in the next section to 
describe maturation of the immune response, then ask whether the N K  landscapes 
have approximately the right statistical features to fit the known features of that 
adaptive landscape. 

Maturation of the Immune Response 

The purpose of this section is to suggest that maturation of the immune response 
is the kind of adaptive process that we have described previously, so that the N K  
model has a natural interpretation in this context. We also show that our ideas 
about "adaptive walks on rugged landscapes" give rise to interesting and experi- 
mentally accessible immunological questions. 

To do this, we will first discuss the remarkable and rapid adaptive evolution 
which occurs during the immune response. This last term refers to the process by 
which the immune system, in response to a specific antigen, "tunes" the antibody 
molecules that it secretes. These antibody molecules accumulate successive mutations 
which progressively increase their affinity for the incoming antigen. 

T H E  N A T U R E  O F  T H E  i M M U N E  R E S P O N S E  

When an organism such as a human is exposed to an antigen and mounts an 
immune response, the complex sequence of events which ensues includes binding 
of the antigen to immature antibody bearing B cells. Those B cells whose antigen 
receptors, each with the same specificity antibody molecule it will later secrete, best 
match the incoming antigen, proliferate most rapidly. This process is called clonal 
selection, (Burnet, 1959) and leads to an abundance of antibodies in the blood serum 
which match the antigen. 

The antigen specificity of an antibody immunoglobulin is determined by the amino 
acid sequence of its heavy (H) and light (L) chain variable regions. The variable 
region's diversity is generated by the combinatorial assembly of five different variable 
(V) gene segments by genomic rearrangement events, during the formation of the 
particular complete V genes, which are between 330 and 360 base pairs long. A 
complete heavy chain V domain results from the joining of VH, diversity (D), and 
H chain joining (JH) gene segments in the genomic rearrangements in each particular 
stem cell. Similarly, the L chain V domain is created by joining of VL and JL gene 
segments. Each of these gene segments is chosen from a repertoire of several to 
several hundred alternatives, to build up combinatorially a very large number of 
alternative heavy variable and light variable regions (reviewed in Honjo, 1983; 
Yancopoulos & Alt, 1986). Honjo (1983) estimates the minimal diversity in the 
mouse generated by these mechanisms to be 5.1.10 7, whereas Berek et al. (1985) 
estimate the diversity at 10 9 . 
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In addition to this combinatorial diversity, two other sources of diversity are 
generated by variability in the exact locations of joining at the junctions of V gene 
segments during assembly with insertion of random nucleotides (Tonegawa, 1983). 
In addition another process results in nucleotide replacement, and is termed somatic 
mutation. In principle, such somatic mutation allows almost limitless V region 
diversity. From analysis of clonally related cells, it now appears that there exists a 
special hypermutation system which specifically alters bases in the V region at a 
rate of 10 -3 per base pair per generation, a rate approximately six orders of magnitude 
higher than the spontaneous mutation rate (McKean et al., 1983; Clark et aL, 1985; 
Manser et al., 1985; Wysocki et al., 1986; Sablitzky et al., 1985). 

We also note that, within either the heavy or light chain V region are three special 
sub-regions called complementarity determining regions (CDRs). These complemen- 
tarity determining regions are thought to be the parts of the V region that actually 
bind the antigen. Presumably, the remaining amino acids, the framework, provide 
a superstructure for the CDR amino acids. 

A N T I G E N  S E L E C T I O N  T H E O R I E S  

The cellular and molecular mechanisms by which the maturation of the immune 
response occurs are still being uncovered. Classical theories suggest that competition 
for limited amounts of antigen may drive a selection process (cf. Siskind & 
Benacerraf, 1969). The argument goes as follows: the amount of antigen bound to 
cell surface immunoglobulin depends upon the product of the antigen concentration 
and the affinity of the receptor for antigen. During the course of an immune response 
the antigen concentration should decrease. If there is a critical amount of bound 
antigen required to stimulate a B cell into antibody production, then as antigen 
concentration falls only those B cells with increasing affinities for the antigen will 
remain stimulated and continue to secrete antibody. Because the antibody secreted 
by a cell has the affinity for the antigen as its receptor, one should see the average 
affinity of serum antibody increase during the course of an immune response. 
According to this theory, based on clonal selection, smaller and smaller subsets of 
preexisting B cells are selected by antigen during the immune response. Mathematical 
models based on this theory were developed by Bell (1970, 1971). 

S O M A T I C  M U T A T I O N  T H E O R I E S  

Doria (1982) pointed out that certain patterns of affinity changes actually observed 
are not consistent with the classical theory. For example, antigen selection theories 
would predict that low doses of antigen would lead to antibodies of higher affinity 
than would be found after giving higher doses. Instead, lower doses lead to antibodies 
with lower affinity (Siskind et al., 1968). 

Recent evidence has been obtained by studying the messenger RNA (mRNA) 
sequences of monoclonal antibodies. Sequencing of mRNAs from different stages 
of the immune response to a single antigen indicate a more complex process. In 
particular, it now appears that somatic mutation plays a major role in maturation 
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of the immune response such that the affinities of the antibodies secreted increase 
over time. 

In response to a specific antigen, clonal proliferation of those germ line genes 
whose variable regions most precisely match the antigen leads to amplification in 
the serum of an initial set of "roughed in" antibodies from a restricted number of 
V region containing cells, The initial fraction of B cells which responds to an antigen 
is on the order of 10 -s (Press & Klinman, 1974). These germ line genes have little 
or no somatic mutation evident, (Kaartinen et  al., 1983; Tonegawa, 1983; Manser 
et al., 1985; Wysocki et  al., 1986). Later in the primary or secondary response the 
majority of antibodies no longer directly correspond to germline varieties, but show 
extensive somatic point mutations. The accumulation of these point mutations is 
correlated with an increase in the affinity of the antibody for the antigen. According 
to present somatic mutation theories, the increased affinity is itself a direct con- 
sequence of further clonal selection. Those somatic mutations which result in an 
alteration of the protein sequence of the V region may alter the binding affinity of 
the antibody molecule for the antigenic determinant. Then those mutated B cells 
whose antibodies bind the antigen with higher affinity proliferate more rapidly, and 
come to dominate the immune response by clonal selection. 

Over a succession of somatic mutations to the V region of the initial germ line B 
cells, the mean affinity of the antibodies increases sharply. Typical changes in affinity 
over the course of maturation are increases from 5 x 10 -4 M tO 5 X 10 -7 M, (Fish & 
Manser, 1987; Kaartinen et  al., 1983). 

Maturation of the immune response is therefore an adaptive walk in antibody 
space from the initial roughed in crudely matching germ line recombinant V region 
amplified by clonal selection through a succession of higher affinity variants, to or 
towards some local optimum antibody which is of higher affinity than its mutant 
neighbors. All the questions we have posed previously regarding the character of 
adaptive walks come to the fore, and point to a central experimental question: how 
correlated is the landscape? 

We define the "landscape" in question precisely. Consider the incoming antigen 
and a single epitope, or molecular feature on that antigen. Then consider measuring 
the affinity of all possible antibody molecules for that single epitope. The distribution 
of the affinity values across antibody sequence space constitutes a well defined 
affinity landscape with respect to that specific epitope. Presumably it is the statistical 
character of that landscape which largely determines the character of adaptive walks 
in antibody space. Therefore, we would hope that studies of a model like the N K  
model might provide this kind of statistical information. We discuss a method of 
applying the N K  model to explore these issues next. 

A P P L I C A T I O N  O F  T H E  N K  M O D E L  T O  T H E  M A T U R A T I O N  O F  

T H E  I M M U N E  R E S P O N S E  

Our fundamental assumptions in applying the N K  model to the maturation of 
the immune response are that a representative member of the population of maturing 
antibodies can be identified at any time, and that these antibodies steadily increase 
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in fitness due to fortuitous point mutations until a locally optimal antibody is 
obtained. We define a locally optimal antibody to have higher affinity for the antigen 
than any of  its 1-mutant neighbors. The experimental results in the preceding section 
confirm that this is, in general, a plausible scenario. However, it is not known 
whether mature antibodies are, in fact, local optima. It is known that the V regions 
continue to mutate without substantial changes in affinity even after they have 
attained maximum affinity for the antigen. This may reflect mutational dispersal 
among near neutral mutants in the immediate vicinity of  the local optimum. We list 
our more detailed assumptions below: 

(1) Choice of the parameter N. We identify the parameter  N with the number of  
amino acid sites in the V region. As indicated in the previous discussion, 
there are between 110 and 120 amino acids in a typical V region. We use 
N =  112 because it was slightly easier to simulate a chain whose length is a 
multiple of  eight. 

(2) Choice of starting place. We assume that the fact that one in one hundred 
thousand B cells responds to a given antigen implies that those that do respond 
secrete antibodies that are in the 99.999th percentile in ability to bind to the 
antigen. Walks start well up on adaptive hillsides. From the point of  view of  
our simulations, the fitness contribution of  each amino acid in the model 
antibody is a random number. Therefore,  finding antibodies in the appropriate 
percentile was reduced to the problem of finding random number seeds that 
give a sequence of  N = 112 random numbers whose average is in the same 
percentile. Although our use of  this procedure implies that there will be some 
fluctuation in the starting fitness of  the model antibody, departure from the 
bottom boundary of  this top percentile was insignificant. 

(3) Choice of neighborhoods. Preliminary simulations reported above suggest that 
the lengths of  walks to optima and the fitnesses of  the optima achieved do 
not depend strongly on the details of  which sites interact with each other. 
However, those preliminary simulations assumed that there could only be 
two amino acids per site and that the walks started from randomly selected 
initial peptides rather than peptides that are already in the 99.999th percentile 
in fitness. In modeling V regions we again consider both extremes: each amino 
acid only interacts directly with its K neighbors; to avoid "bounda ry"  effects 
we therefore idealized the V region as a circular protein. Alternatively, each 
amino acid interacts with K amino acids drawn randomly from the chain. 
In this case we do not assume the peptide chain is a circle. 

(4) Choice of 19N neighbors or neighbors via the genetic code. A V region length 
N can be thought of  as having 19N 1-mutant neighbors. However,  at the 
DNA level, many single amino acid substitutions require two or three base 
pair changes. Restriction to single base changes at the DNA level implies a 
reduction on the number of 1-mutant neighbors at the protein level. Both 
cases were studied. We incorporated "coding"  into the model by explicitly 
including translation. In particular, we modeled this by assuming that the 
evolving entity was a pair of  polymers, a "protein molecule",  consisting of  
the 112 "amino acids", as before, and a (single stranded) " D N A  molecule" 
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consisting of 112 x 3 = 336 sites, each with one of the four "bases". The initial 
DNA molecule was "back-translated" from the starting model V region to a 
DNA sequence coding for that model V region. The codon assigned to each 
position in the back-translation was chosen randomly from the synonymous 
codons for that amino acid. A "step" consisted in a point mutation of one 
of the DNA sites, translating the new DNA sequence into the corresponding 
protein using the genetic code, and then computing the fitness of the protein. 
Since adaptation passes only tofitter neighbors, in this procedure the adaptive 
walk does not pass to a 1-mutant neighbor which is a silent mutation to a 
synonomous codon. A DNA mutation which resulted in an internal stop 
codon in the model V region was scored as a lethal mutation with fitness 0. 

Use of the "code" sharply reduces the number of 1-mutant neighbors. Each DNA 
sequence has only 1008 1-mutant neighbors, which are obtained by substituting any 
of the three other possible bases in each of 336 sites. In addition, due to synonymous 
codons, only about 75% of these result in substitution of a new amino acid. Thus 
in the versions of the model based on coding, each model V region has about 756 
1-mutant neighbors rather than 19 x 112 = 2128 1-mutant neighbors. 

(5) Complementarity determining regions (CDRs) or not. The N K  model, in its 
general form, is isotropic. It assumes that all sites make direct contribution 
to fitness of the overall string, whether that string is interpreted as a genotype, 
or protein. Proteins, however, may be more hierarchically constructed, with 
some sites, e.g. amino acids in the actual active site of an enzyme, or binding 
site of an antibody molecule, having direct bearing on function, while others 
play a more modest support role. 

As remarked above, in the V region of antibody molecules, special hypervariable 
regions called complementarity determining regions, are known to play a critical 
role in antibody diversity and in actual binding of the antigen. The surrounding 
parts of the V region are thought to be a supporting "framework" for the basic 
structure of the binding site. A simple way to begin to model the distinction between 
CDRs and framework is to assume that only the amino acids in the CDRs make 
direct impacts on the fitness of the V region, while those in the framework act via 
their influence on the CDR amino acids. Thus as a first effort we have modeled the 
existence of three CDRs by assigning three contiguous regions of amino acid 
positions in our model V regions, matching those in observed V regions and measured 
the fitness contributions only of the amino acids in the model CDRs. Figure 9(a) 
shows CDRs in a particular V region. We utilized three regions of these sizes and 
spacing, with a total of 37 amino acids, in our modeled V regions. Because the 
amino acids in the framework interact with the amino acids in the CDRs, they still 
have an indirect bearing on fitness. 

(7) Choice of K. At this point, the remaining free parameter in the model is K. 
The experimental data we describe in more detail immediately below show 
that walk lengths in actual affinity landscapes average between six and eight 
steps, but with considerable variance. Walks start well up on adaptive hill 
sides where the starting germ line V region initially amplified by clonal 
selection is in the highest 9999th percentile. Thus we seek a value of K such 
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that walks to local optima from that starting percentile average six to eight 
steps. This is the central parameter matching step in applying the N K  model. 
We use two features of the immunological data: the fraction of B cells which 
respond to an antigen sets the starting percentile in affinity space; the number 
of mutations substituting amino acids in the V region during maturation sets 
the mean walk length to optima. Given these we can f ind the value of K 
which yields walks with the appropriate length by carrying out numerical 
simulations at various trial values of K. 

Affinity landscapes are correlated 

An immediately interesting point arising from framing these questions is that the 
appropriate value of K must be less than the maximum, K = N - l ,  and therefore 
that antibody affinity landscapes must be correlated. This follows from examining 
walk lengths at the upper extreme value for K, K = N - l ,  corresponding to a fully 
random landscape. Here the probability that a model V region with rank order 
fitness x is fitter than its 19N fitter neighbors is x ~gN. Thus, any starting peptide 
that is in the top 99.999th percentile in fitness has roughly a 98% chance of already 
being fitter than its 2128 1-mutant neighbors. That is, i f  affinity landscapes were 
entirely uncorrelated, initially selected germline variants would already be local optima. 
Since maturation of such antibody molecules does occur we can conclude both that 
affinity landscapes are correlated, and that, within the N K  model, K must be less 
than N-1. 

E X P E R I M E N T A L  F E A T U R E S  O F  A F F I N I T Y  L A N D S C A P E S  R A I S E D  BY T H I S  A N A L Y S I S  

Maturation of the immune response occurs on a rugged affinity landscape whose 
structure is only partially known. Whether the N K  model itself proves to be a good 
model for the structure of that landscape, a major purpose in this article is to focus 
attention on the structure of such landscapes. In general, all the questions raised 
previously regarding abstract landscapes are afortiori of interest with regard to the 
immune system: 

(1) How many improvement steps must be taken from any initial antibody 
molecule to a local optimum, i.e. how many somatic mutations accumulate 
in the V region of an initial roughed in germ line variant antibody molecule 
during maturation? The answer, as mentioned above, appears to be a range, 
with a mean of six to eight (Bothwell et al., 1982; Tonegawa, 1983; Heinrich 
et al., 1984; Berek et al., 1985). For example, Crews et al. (1981) studying the 
VH gene responding to phosphoryl choline find between one and eight residues 
changed; Bothwell et al. (1982) find three mutations in a lambda (A) light 
chain and six in a A2 light chain V region; McKean et al. (1984) studying the 
Vk region of antibodies against a determinant on influenza found seven or 
eight replacements; Clark et al. (1985) studying the secondary response to 
influenza found 20, 12, and 19 Vh coding mutations, and 9, 8, and 15 Vk coding 
mutations. 

(2) What fraction of 1-mutant variants of the initial roughed in germ line antibody 
have higher affinity for the immunizing antigen? How does that fraction 
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change, presumably dwindling to O, as successively higher affinity antibody 
molecules are selected during maturation of the immune response? Here it 
is known that a large fraction of the 1-mutant variants have lower affinity, 
but the exact fraction with higher affinity at any step of the maturation 
processes is unknown. 

(3) How rugged is the affinity landscape in the 1-mutant vicinity of local optima? 
The question of whether affinity falls off dramatically in some directions and 
slowly in others translates directly to whether mutations at specific positions 
in the V region cause dramatic loss of affinity while those at other positions 
cause little loss of affinity. Restated, the distribution of the number of amino 
acids which can be substituted at a site with retention of function is a direct 
picture of the local ruggedness of the affinity landscape. 

(4) How many alternative local optima can be reached from any initial roughed 
in germ line antibody amplified by initial clonal selection? Further, what is 
the probability of climbing to each of those alternative optima, hence the 
density of their occupancy? Here recent work with inbred mice (Slaughter & 
Capra, 1984; Perlmutter, 1984) has demonstrated that multiple local optima 
are accessible. In many cases initial clonal selection opts for the same initial 
V region, which then climbs to different mature forms by accumulating 
different somatic mutations. It appears from these and similar experiments 
that the number of alternative optima accessible from the initial antibody 
may be at least modestly large. Typically, comparison of five to ten monoclonal 
antibodies deriving from the same initial V gene shows that all differ from 
one another. Because only small numbers of sequences have been compared 
in this way, it is unknown whether a much larger number of local optima are 
accessible. 

These experiments are not entirely unambiguous. As remarked above, we have 
assumed that mature antibodies are actually local optima, and one of the predictions 
of the N K  model will be that many local optima should be accessible. However, 
the fact that different mature antibodies emerge from the same V gene is insufficient 
to confirm our reasoning. From the work of Eigen & Schuster (1979), Eigen (1985), 
Schuster (1987), and Kauffman (1989), as well as classical population genetic 
analyses (Ewens, 1979), we know that a mutant spectrum around an optimum can 
be expected, and we know that the rate of hypermutation is high. Thus the diversity 
seen in mature antibodies derived from one initial V gene may reflect the incapacity 
of clonal selection to eliminate near neutral variants. 

(5) How similar are the local optima? Maturation climbs to alternative local 
optima from an initial roughed in V region. The typical observations, described 
more fully below, when several different monoclonal antibodies derived by matur- 
ation are compared is that many amino acids are "conserved" while a smaller 
fraction are repeatedly mutated with respect to the initial V gene. Furthermore, 
some sites repeatedly have mutated "in parallel" to the same alternative amino acid 
(Slaughter & Capra, 1984). 

As stressed, we use observed walk lengths and starting percentile to "tune" K. 
Hence fitting walk lengths with the N K  model is just curve fitting. However, the 
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value of  K which we derive, and the remaining features (2)-(51., are aspects of  the 
immune response about  which the N K  model makes clear and testable predictions. 
We return to this below after describing our simulation results. 

Predictions of the Model and Comparison with Experimental Data 

T H E  A P P R O P R I A T E  V A L U E  O F  K IS N E A R  40 

Numerical  simulations were carried out for all versions of  V region models. Of  
these, presumably the most realistic combinat ion includes both the CDRs  and the 
genetic code. But as we will see, all of  the possibilities predict the same features of  
the landscape and qualitatively agree with the available experimental  data. The 
results are remarkably robust. As Table 4 shows, whether CDRs were included or 
not, whether all 19N protein neighbors of  the V gene were used or translation via 
the genetic code, was used, and whether the K sites were constrained to be flanking 
adjacent sites or chosen at random, a value of  K = 40 gives rise to walks of  between 
6 and 12 steps. K = 30 typically yields walks which are too long. K = 50 typically 
yields walks which are too short. Since walk lengths are largely insensitive to the 
remaining parameters,  to a very good first approximat ion,  the dominant  parameters  
are N and K. 

There is considerable dispersion about this mean value. As shown in Figures 4(a) 
and (b), for a given value of N and K and under  defined conditions for the rest 
of  the model conditions, walk lengths might range from 2 or 3 to 15 to 20. This 
dispersion reflects again the ruggedness of  the landscape and is encouraging, given 
the fact that there is a similar dispersion in the experimental  data. 

Ultimately, the N K  model predicts some specific distribution of  walk lengths to 
optima,  not just a mean and standard deviation. Thus accumulat ion of  adequate  
experimental  data can ultimately establish the actual observed distribution of  walk 
lengths for comparison to the N K  model or improved models. 

Finding a specific value for K is, in itself, interesting. I f  the model  is taken 
literally, K stands for the number  of  amino acids which bear  on the fitness contribu- 
tion of  each amino acid. Then, if K is about  40, alteration in a single amino acid 
could affect the behavior  and function of  roughly 40 amino acids in the V region. 
Is this plausible and is there any evidence bearing on the issue? 

In a well folded protein, an amino acid is not only open to influence by those 
which are its neighbors in the primary sequence, but also those which are near it 
in the folded form due to juxtaposi t ion with amino acids distant in the pr imary 
sequence. For example,  each of  the C D R  loops is typically hydrogen bonded to 
one or more of  the other CDRs  as well as points in the f ramework (Shenkin, 1987). 
In turn, any of  those amino acids is itself coupled to its neighbors in the pr imary 
sequence. 

One approach  to studying this question is based on hydrogen exchange data. The 
experimental  technique consists in observing a protein in deuterated water. Hydrogen 
atoms on different amino acids in the protein exchange with the deuterium at 
different rates which depend upon the product  of  an intrinsic exchange rate for a 
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TABLE 4 

Mean walk length to local optima, mean number of fitter neighbors from the first model 
V region on the walk, and mean number of sites of the locally optimal V region attained 
which could be substituted with maintenance of above "threshold" fitness. Simulations 
were carried out for different versions of the model, as shown. The number of trials 
under each condition was ten with conditions using the DNA code and 25 for those 

without it. Standard deviations shown in brackets 

Average Average no. fitter Mean no. of 
K walk length neighbor on 1st step allowed subst./site 

Protein (no cdr) 
adjacent 

random 

Protein (with cdr) 
adjacent 

random 

DNA Code (no cdr) 
adjacent 

random 

DNA Code (with cdr) 
adjacent 

random 

30 13.6 (3.2) 65.9 (20.4) 15.4 (3.6) 
40 8.6 (4.5) 24.7 (9.9) 4.1 (3.9) 
50 4.9 (2.3) 10-3 (4.9) 0.8 (1.4) 

30 17-7 (4.4) 83.7 (13-0) 17-9 (2.4) 
40 11.5 (5.3) 42.1 (6.9) 8.5 (5.8) 
50 6-6 (2-2) 17.5 (3.5) 2-1 (3-0) 

30 26.1 (7.1) 89.7 (27.8) 12.5 (6.6) 
40 9.8 (3.7) 27.7 (11.3) 5.0 (5.5) 
50 7.0 (3.3) 12.7 (6.0) 1.5 (2.9) 

30 16.1 (5.3) 81.8 (16-2) 15-5 (4-5) 
40 12.0 (3.9) 36.9 (9.3) 7.4 (5.8) 
50 7-3 (3.2) 17.0 (5.8) 1.9 (3.0) 

30 8.4 (2.3) 20.1 (12.7) 10-5 (5.1) 
40 5-2 (2.7) 7.3 (4.3) 3.4 (3.8) 
50 2-9(2.1) 3.9(2.5) 0.3(0.7) 

30 11.7 (4.5) 24.6 (8-2) 14-1 (5-1) 
40 6.9(3.3) 11.2(4.9) 5.7(5.1) 
50 3.1 (1.9) 4.5 (2.8) l.O (2.0) 

30 15-1 (5.6) 41.8 (17.5) 9.7 (7.5) 
40 6.7(3.1) 17.1 (12.1) 3.2(4.6) 
50 3.5 (2.1) 7.0 (7.0) 0.6 (1.7) 

30 11.2(4.1) 27.4(9.3) 11.9(6.1) 
40 7.6 (2.7) 10.6 (5.5) 3.8 (4.5) 
50 4.1 (2.2) 5.6(3.5) 0.7(1.7) 

hydrogen exposed to deuterated water and the frequency of exposure. That frequency 
in turn depends upon subtle "breathing" motions of the protein as it twists and 
unfolds slightly in different ways. Thus hydrogen exchange is a sensitive measure 
of protein behavior. Wand et  al. (1986) and Roder et  al. (1989) have studied such 
hydrogen exchange in numbers of proteins. While they have not yet analyzed 
differences between a protein and a 1-mutant variant, they have looked at the 
oxidized and reduced form of cytochrome C, a 106 amino acid protein. Oxidization 
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I0 

Adaptive step 

FIG. 4. The number  of  fitter 1-mutant  neighbors at each adaptive step from the initial model  V region, 
the best in 100,000, on several different adaptive walks to local opt ima for the same values o f  the N K  
model parameters.  (a) Model ing the V region with C D R  regions present, and  with 19N l -mutan t  
neighboring proteins. (b) As in (a) except that l -mutan t  neighbors were determined via the D N A  code. 

and reduction, due to presence or absence of a charge on the heme group, correspond 
very roughly to substitution of a charged for an uncharged amino acid in that 
vicinity. Roder et al. (personal communication) have been able to examine 50 hydro- 
gen bonded pairs of amino acids, and find that at least 30 of them alter their exchange 
behavior in the oxidized and reduced forms. The very crude conclusion to be drawn 
is that a charge alteration at one point in a protein can affect at least 30 amino 
acids. Since these authors studied only half the hydrogen bonded atoms, the number 
of amino acids affected by altering one amino acid may be greater than 30. This 
point has obvious caveats. The study is not of an amino acid substitution, but of 
an altered heme group. Further, to have found a statistically significant alteration 
in hydrogen exchange by an amino acid does not yet say that such alterations are 
in any way relevant to the function of the protein. Third, the cytochrome C molecule 
may be well evolved to undergo alterations when the heme group is charged. Many 
fewer alterations in hydrogen exchange behavior might be found by randomly 
substituting amino acids in proteins. Nevertheless, the data suggests that any amino 
acid might be affected by, and affect, as many as 30 amino acids in a protein region 
of about 106 amino acids. Direct testing in antibody molecules would require study 
of hydrogen exchange in the V region of a mature antibody and its 1-mutant variants. 

THE N K  M O D E L  MAKES PLAUSIBLE P R E D I C T I O N S  ABOUT THE FRACTION 

O F  FITTER l - M U T A N T  VARIANTS 

Given a value of K = 40, the N K  model makes clear predictions about the fraction 
of fitter 1-mutant variants of the first roughed-in V region and about the fraction 
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of  fitter 1-mutant variants of  each improved variant on the adaptive walk. The 
expected number  of  fitter variants to the first V region is on the order  of  one or two 
percent in all of  the combinations of  conditions mentioned above (Table 4). In those 
runs that used all 19N 1-mutant neighbors, 24-42 among the 2128 1-mutant variants 
are typically fitter. When translation via the genetic code (and the implicit constraints 
in the l -mutant  neighbors) were added, typically there are about seven to 17 fitter 
1-mutant variants among the 1008 1-mutant nucleotide substitutions and about 756 
1-mutant V regions at the protein level (Table 4). 

There is moderate variance in the fraction of  fitter 1-mutant variants of  the initial 
V region on individual walks. The minimum we have found on the initial step is 1, 
and the maximum is 70, or over 3%. 

The fraction of  fitter variants dwindles, but not smoothly on any specific walk, 
to 0 over the steps to the local optimum, as shown in Fig. 4(a) and (b). 

The actual fraction of  fitter variants in maturing antibody molecules is not yet 
known in detail, but the experimental procedure to find this fraction is clear: 
Monoclonal  antibodies at different stages during an adaptive walk must be obtained, 
the gene cloned, and the 1-mutant spectrum examined for the affinities of  the 
1-mutant variants. However,  studies of  the lac repressor provide an indirect estimate 
of  the number  and the nature of  fitter one mutant variants of  a roughed in V region. 

The lac repressor monomeric  unit has 360 amino acids. Miller et al. (1979), studied 
a collection of  over 300 altered proteins, each by a single substitution, with respect 
to both ligand binding activities. The mutant forms were generated in a controlled 
way by use of  90 different nonsense sites in the corresponding lac I gene which 
were suppressed by a set of  nonsense suppressors of  amber (UAG),  ochre (UAA) 
or UGA mutations. The classes of  substitutions allow substitution of  similar (e.g. 
hydrophobic  for hydrophobic)  and dissimilar amino acids at 25% of  the positions 
in the normal molecule. 

Mutant phenotypes due to loss in capacity of  the repressor molecule to bind to 
the operator  DNA, or to bind allo-lactose, (or the synthetic inducer IPTG) or due 
to an increased affinity for the DNA or IPTG, allowed Miller's group to study the 
consequences of  such mutations conveniently. The overall results from 323 single 
amino acid replacements is that 42% result in a detectable change in either the 
capacity to bind IPTG, or the operator  DNA. The remaining 58% appear  to be 
"si lent" and do not result in measurably altered proteins. About 33% of  the 
replacements decrease capacity to bind to the operator  DNA, although only 15% 
of  the substitutions destroyed 25% or more of  the capacity, and only 8% became 
fully inactive. About 11% reduced affinity for the inducing metabolite. On the other 
hand, 1% of  all one step mutants actually increased affinity for the operator  DNA, 
in some cases by as much as 100-fold. No one step mutant was found which increased 
affinity for IPTG. 

From this study we can draw at least the following conclusions. First, even well 
tuned proteins may have rare variants which " improve"  a given function. Here, one 
percent of  the 1-mutant neighbors, at a restricted number  of  sites, showed increased 
affinity for the operator  DNA, and no mutant  was found which showed increased 
affinity for the inducer metabolite. Second, 58% of  the single amino acid substitutions 
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had no obvious effect. Because the assays employed are rough measures,  the reported 
fraction of  silent mutants is probably an over estimate. However,  since 42% of  the 
mutants clearly do reduce affinity for the opera tor  or inducer or both, it is very 
unlikely that more than a small fraction of  the one step neighbors subtly increase 
affinity. 

Our simulation results suggest that an initial germ line V region with K = 4 0  
would be open to improvement  by about  1-2% of  the 1-mutant variants. This is 
very close to the observed data for the lac repressor. Thus, tuning K to fit observed 
walk lengths yields a value which, having tuned the ruggedness of  the fitness 
landscape, predicts a plausible value for the expected fraction of  fitter 1-mutant 
variants of  the initial germ line V region amplified by cional selection. 

Note that these predictions of  the N K  model are fairly sensitive to K. When 
K = 30, roughly 3-5% of  the 1-mutant variants o f  the first clonally selected V region 
have higher affinity, while walks to opt ima would average about  13 steps. For K = 20, 
the average walk length is 22 steps and about  7% of  the 1-mutant variants o f  the 
initial ant ibody are fitter. 

THE NK MODEL PREDICTS THE EXISTENCE OF CONSERVED AND 
VARIABLE SITES IN THE V REGION 

In real proteins, antibodies and otherwise, it is widely known that some amino 
acids cannot  be altered without drastic loss of  function while amino acids at other 
positions can be altered with relative impunity. It is therefore of  interest to ask 
whether the N K  model,  for the parameters  given, predicts this phenomenon  without 
further assumptions.  

To answer this question, we computed the fitnesses of  all of  the 1-mutant neighbors 
of  the local maxima obtained in our walk simulations. In order to make valid 
comparisons  between simulations with and without the genetic code, we substituted 
all 19 other amino acids in each site o f  the V region, including those amino acids 
that required several mutat ions of  the corresponding D N A  sequence. The results, 
for different values of  K and for different assumptions about  whether the entire V 
region or just the CDRs are used in comput ing fitness, are as expected. The first 
main result is that as K increases, the jaggedness of  the landscape increases. In 
other words, landscapes are smoother  for low K than for high K. The second major  
result for K = 40 is perhaps  more surprising: at some sites, any model  amino acid 
substitution causes a dramat ic  loss of  fitness, while at others, all substitutions cause 
almost no loss of  function. At still other sites, some substitutions cause almost no 
loss of  function while other amino acids in the same site cause drastic loss of  
function. Thus, without further assumptions,  the N K  model for these parameters  
gives a highly rugged landscape in which amino acids at some sites in the locally 
opt imal  V region must be entirely conserved to preserve function, and amino acids 
at other sites can be substituted indiscriminately. 

Note that, in constructing the general N K  model,  no site is a priori more important  
than others. It is instead the fact that K is high, resulting in a rugged landscape 
which predicts that some sites are conserved and others broadly substitutable. 
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A particularly interesting view of  these results is the following. We have no direct 
scale relating "fitness" in the N K  model with real affinities o f  ant ibody molecules. 
However,  real ant ibody walks start with those already the best in 100,000, and such 
ant ibody molecules typically have affinities of  about  10 -4 M for their antigens. In 
contrast, matured antibodies have affinities around 1 0  - 7  M.  Then it is sensible to 
define the fitness of  the first member  of  the model walk as corresponding to a modest  
affinity of  10 -4 M, and let this fitness serve as a threshold separating model V regions 
which do and which do not bind the antigen. Given this threshold, we can test the 
number  of  substituted amino acids at each site in the 112 long optimal  V region 
which preserve "at  least above- threshold"  function. Figures 5(a),(b) show the results 
for model V regions for different values of  K. Similar results are found for the 
different versions of  the model  with and without CDR,  coding, or choice or adjacent 
or random epistatic connections (Table4) .  Again, it is K that determines the 
qualitative features of  the landscape. For K =20,  each of  the 112 sites can be 
substituted by all 19 of  the other amino acids and the mutated model V region 
remains above threshold in affinity. For K = 30, most sites are substitutable by 19 
amino acids, but some sites can only be substituted by 15, 1 6 , . . . ,  18 amino acids. 
For K = 50, almost  no sites can be substituted with any amino acids and preserve 
above threshold affinity. But for K about  40, a very wide distribution is found. 
Some sites can be substituted by 19 other amino acids, some by 15, some by 10, 
some by 5 and some by 0. Thus K about  40 yields the broadest  distribution. We 
emphasize that this broad distribution is a prediction of  the N K  model.  

The experimental  data  to test this prediction would consist in a high affinity 
mature monoclonal  ant ibody against a defined epitope,  and its entire 1-mutant 
spectrum with respect to V region mutants.  The affinities of  that mutant  spectrum 
constitute the data set. It is not available, but the experiment  is obviously feasible 
using cloned ant ibody molecules. Nevertheless a rough approximat ion  to this experi- 
ment  is available. Geysen et al. (1985, 1986, 1987), Getsoff et al. (1987) and Fieser 
et al. (1987) have studied the effects of  all possible 1-mutant variations in an antigen 
upon the antigen's  affinity for the antibody. More precisely, in these studies, the 
authors raised polyclonal sera or monoclonal  antibodies against a defined six amino 
acid long epitope on a protein antigen, then made synthetic hexamers  identical to 
that epi tope and demonstra ted  that the hexamer  was bound by the sera or monoclonal  
ant ibody at high affinity. Then in each case the authors looked at all 20 variants at 
each of  the six positions, one position at a time. The results for nine such peptides 
are summarized in Fig. 6. In this summary  we have utilized the authors data and 
set an arbitrary threshold of  about  10% affinity compared  to the "wild type"  hexamer  
as the criterion for " funct ion" .  The striking feature is that the distribution is again 
very broad.  Some sites are not substitutable at all, others are substitutable by all 19 
other amino acids, still other sites accept some fraction of  the 19 and retain affinity. 

An interesting feature of  the observed distribution is that it is not only broad,  
but bimodal .  Sites more likely to be entirely substitutable, or not substitutable at 
all. A bimodal  distribution emerges rather naturally from our model if a small 
distribution o f  K values between 30 and 40 is assumed. Whether  the bimodali ty is 
to be taken seriously at this stage is uncertain. 
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FIG. 6. Experimental distribution of  acceptable number  of  amino acid substitutions per site in hexamers 
with maintenance of 10% or more of  the affinity of the "wild type" hexamer for the polyclonal sera or 
monoclonal antibody. 

Four comments are warranted. First, it is clearly encouraging that the N K  model 
predicts a broad distribution for K near 40, and such a broad distribution is found. 
Second, we have defined a " threshold"  affinity as the fitness of  the first model V 
region in the walk, the best in 100,000. We do not know how this threshold bears 
on the experimental  affinities measured. Third, the experimental data need to be 
used cautiously in this context. They concern free hexamers bound to polyclonal 
sera, or monoclonal  antibodies, not the number  of  substitutions at each position 
within the V region of  a mature monoclonal  antibody molecule. The constraints 
within a V region may or may not dramatically alter the observed dis t r ibut ion.  
Fourth, taking data and model for the moment  at face value, the same value of  K 
which fits walk lengths to optima also predicts a reasonable fraction of  fitter 1-mutant 
variants, and genuinely predicts that some sites allow no substitutions while others 
are more permissive. Were K much smaller, say 20, almost all sites would be open 
to substitution by most model amino acids. The prediction is thus sensitive to K. 

THE NUMBER OF ALTERNATIVE LOCAL OPTIMA F O U N D  

FROM AN INITIAL V REGION 

The N K  model for these parameters allows us to examine the number  of  alternative 
optima accessible from the initial model V region, and also to test whether alternative 
accessible optima are typically "hi t"  equally often on independent  walks, or with 
biased preferences. 

The experimental data on repeated walks from the same V region remain scant, 
as noted, but clearly suggest that multiple optima are accessible from the same 
initial V region. The true number of  such local optima is not known experimentally, 
but presumably is greater than the five to ten alternatives often observed. 

Numerical simulations with K = 40 were carried out from initial model V regions, 
based on use of  the DNA code, and were s topped by limitations of  computer  storage. 
In two simulations making 797 and 315 such walks from the same initial V region 
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150 and 235 optima were found. Because many of  these optima were found only 
once, it is difficult to know how many more remain to be accessed from the same 
initial V region. However, it is a clear prediction of  the N K  model that a given 
initial germ line V region can give rise to hundreds, perhaps thousands of  mature 
antibodies, each a local optimum in affinity space. 

A second feature of  these studies is shown in Fig. 7, which is the histogram of 
the numbers of  times each local optimum was "hi t"  on independent  random walks 
from the same initial model V region. As can be seen, four optima are each 
encountered about 130 times. Analysis of  these four showed that each is a 1-mutant 
variant of  the initial V region from which walks started. Ultimately, the N K  model 
predicts a distribution which is open to experimental testing. The density distribution 
with which nearby local optima are reached is another  expression of  the ruggedness 
of  the fitness landscape. 
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FIG. 7. Multiple adaptive walks from the same initial model V region, K = 40, showing how many 
opt ima were "'hit" once, twice, or many times. Note that some optima were encountered 130 times on 
independent  walks from the same initial V region. 

The Similarity of  Alternative Local Optima; Conserved Sites and Parallel Mutations 

Comparison of  alternative mature V regions obtained experimentally reveals that 
not all sites in the V region accumulate somatic mutations equally. In particular, 
some sites are rarely mutated, and among the sites which are preferentially mutated, 
sometimes the same amino acid is substituted on two or more independent  walks. 
These are called "parallel"  mutations. To see whether these phenomena are observed 
in the N K  model landscapes, we compared four to 11 alternative optima accessed 
from the same initial V region. Similarly, experimental data sets often compare five 
to seven V regions obtained by independent  walks from the same initial V region 
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Number Number of Number of 
K of observations experiments sequences 

A 20  79 ( 91 9 
A 25 68 ( 83 9 
A 25  55 ( 68 8 
A 30  48 -- 48 7 
A 30 52 ( 62 I0 
A 40  41 ( 54  5 
A 40  36 ( 43  9 
A 40  35 < 39 4 
A 40 27 ( 33 I0 
A 40  41 ( 54 7 
A 40  34  ( 37 7 
A 50  20 -- 20  4 
.4 5O 18 ( 27  I I 
A 50 15 ( IT 4 
A 50 21 ( 23 6 

R 40 47  ( 53 5 

Antlorsonate vs 
"germl lne" 13 ( 23 6 

Antlarsonote vs 
prototype antlers 28 ( 42  6 

A ntlphosphochollne 
v l  dgermllno" 21 ( 26 8 

FIG. 8. Compar i son  of  numerical  results for model  V regions with different parameter  values, and  
observed alternative V regions derived from a single initial V region, with respect to the deviation in the 
number  of  muta ted  and non-muta ted  sites from chance. In all cases, model and real V regions show 
that fewer sites are muta ted  than  expected by chance,  suggest ing "hot  spots"  and  conserved regions. 

(Slaughter & Capra, 1984; Perlmutter, 1984). Figure 8 shows that for experimental 
and model V regions the numbers of sites which accumulate mutations in sets of 
the local optima compared to the initial V region is less than expected by chance. 
This means that some sites are preferentially not mutated, and others are mutated 
more often than expected in real and model V regions. Figures 9(a),(b) show 
experimental data sets for two different clusters of V regions, one for the arsonate 
system (Slaughter & Capra, 1984), the other for phosophocholine (Perlmutter, 1984). 
In addition Fig. 9(c) shows ten local optima and the initial model V region for an 
example with K = 40. Note that in the real and experimental sets some sites have 
similar parallel mutations. 

Conclusions, Caveates, and Directions for Future Work 

How seriously should we take the N K  model as an account of  the structure of  
affinity landscapes? With considerable, but not unbridled enthusiasm. The N K  
model is the first effort at a statistical model to predict the rugged structure of  fitness 
landscapes in sequence space. A single choice of  parameter values, N = 112 as set 
by the known length of  the V region, and K about 40 as tuned to fit known walk 
lengths to mature antibodies predicts a number of  features of  antibody affinity 
landscapes well. It is premature to say that the N K  model predicts these features 
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FIG. 9. Observed initial antibody sequence early in the immune response and alternative mature forms 
which evolve from each. Letters on mature strands show substitutions relative to the initial germ line V 
region from which maturation occurs, top strand. (a) The arsonate system, Ars-A (Slaughter & Capra, 
1984). Boxes correspond to the three CDR regions. (b) The anti-phosphocholine system (Perlmutter, 
1984). (c) Comparison of initial model V region and ten different local optima found on adaptive walks 
from that initial V region. Numbers on different "mature'* strands correspond to substitutions with 
respect to initial model V region. Boxes show parallel substitutions arising independently on independent 
adaptive walks to different local optima. 
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accurately. All we can say now is that the predictions are very plausible. Direct 
experimental investigation with cloned V regions at different stages of  maturation 
are needed to test the predictions. Even more directly, one might imagine carrying 
out an entire adaptive walk by fitter 1-mutant variants in vitro beginning with a 
cloned V gene from the initial B cells which respond. 

Although broadly successful, the N K  model as tested does exhibit certain failures. 
In particular, during maturation of  the immune response there appears to be a 
tendency for mutations causing amino acid substitutions to accumulate preferentially 
in the CDRs. Further, there may be a tendency for less than the expected number 
of mutations causing substitutions than expected by chance to accumulate in the 
framework regions outside the CDRs (Shlomchik et al., 1987). If true, these biases 
are not captured in our current application of  the N K  model to V regions. Such 
biases might reflect evolutionary specialization of  the framework create the funda- 
mental structure of an antibody binding site, while the CDRs specialize for antigen 
binding. In this view, the framework is highly adapted and easily disrupted, leading 
to overall loss of  binding by the entire V region. Modeling such a high adapted 
character of  the framework is ignored in our  modeling of  CDRs and frameworks. 
Instead we tested the case in which only CDRs make direct contributions to fitness 
and the framework acts indirectly via the CDRs. An alternative approach would be 
to allow the framework amino acids, on average, to affect more than K other sites. 
Use of  a distribution of  K values as epistatic " inputs"  or "outputs"  might provide 
a better model of  the possible hierarchical epistatic relations among amino acids 
to overall function. 

The fact that the N K  model appears to succeed as well as it does is encouraging 
in at least three respects. First, it suggests that a statistical model may well capture 
the actual structure of  fitness landscapes. Second, if the N K  model, or an improved 
model, can predict the statistical structure of  antibody affinity landscapes, it may 
also be able to predict the structure of  fitness landscapes with respect to enzymatic 
function. Both involve the evolution of  a structure with a "business e n d " - - t h e  
antigen binding site in the case of  the antibody and the active site in the case of  
the protein. Third, if the N K  model is close to right, it may be telling us something 
fundamental  about how proteins work. In solid state physics spin glass models 
(Binder & Young, 1986; Stein et al., 1987) capture the real behavior of  physical 
spin glasses by assuming interactions are so complex that the statistical distribution 
of  their effects can be captured by random assignments of  coupling energies. The 
same may be true for proteins. We comment briefly on these issues. 

Certainly the most important  implication of  the rough success of  the N K  model 
at this stage is the hint that some statistical theory may some day actually fit well 
established data on the actual structure of  the affinity landscape. Obvious refinements 
of  the model would include more of  the details of  protein chemistry. Thus, as 
suggested above, some sites should have more interactions than others, reflecting 
the fact that some amino acids have more hydrogen bonds, hydrophobic  bonding 
and salt bonds than others. One would therefore like K to be chosen from a 
distribution of  possible values. In this simplest application of  the N K  model the 
identity of  the A amino acids at each site bears no relation to the identity at another  
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site. Amino acid no. 7 is merely a name specific to each site. In reality, alanine at 
each site is the same amino acid. Thus, the nature of the interactions should reflect 
the fact that alanine at each site is the same amino acid and that different amino 
acids have different chemical properties. 

Whether or not the theoretical predictions regarding adaptive walks on correlated 
landscapes generated by the N K  model fit the experimental data is far less important 
than obtaining real insight into the true adapti~,e landscape of antibody molecules 
with respect to affinity for a specific epitope. It is worth stressing again the data 
needed to extend understanding Perhaps most important is analysis of the affinity 
of all 1-mutant variants of a given antibody molecule for the same epitope. Second, 
as the immune response matures, and higher affinity antibodies are amplified, it is 
important to examine whether the number of fitter V regions decreases as affinity 
increases. Third, we need to know the distribution of amino acid substitutions which 
allow modest affinity for the epitope. Is it broad or not? Fourth, we need good data 
on sequence similarities during branching walks to alternative optima from the same 
V region. As noted, perhaps the best way to obtain the requisite data is to carry out 
in vitro adaptive walks from cloned examples of the initial germ line variant amplified 
by clonal selection. At each step all 1-mutant variants should be generated, and one 
or more selected to carry on the walk to local optima. The actual structure of affinity 
landscapes is open to direct investigation and is one piece of the immune system 
puzzle. 

We have focused in this article on the structure of affinity landscapes. But the 
immune response itself depends upon clonal selection of mutating B cells flowing 
across this landscape under the drives of antigen stimulation in the context of 
regulatory effects due to T cells, growth factors, and antiidiotype effects, as well as 
proliferation of T cells and other cellular components of the immune response. An 
obvious immediate direction for investigation is exploration of the proliferation and 
flow of B cell populations across rugged affinity landscapes. As in models of 
molecular evolution on rugged landscapes (Eigen, 1987; Schuster, 1987; Kauffman 
1989a, b), a variety of behaviors including "freezing" of the adapting population 
into small regions of the space, and diffusive flow among near neutral mutants along 
ridges in the affinity landscape, as functions of the mutation rate, population size, 
and fitness landscape structure, are to be expected. 

A R E  P R O T E I N  A D A P T I V E  L A N D S C A P E S  A N D  F O L D I N G  L A N D S C A P E S  R E L A T E D ?  

We close with a question. Adaptive landscapes appear to be very rugged and may 
be captured by something like the N K  model. The clear relation between the N K  
model and spin glasses was noted above. Spin glass models are currently proving 
useful as models for protein folding itself (Ansari et al., 1985; Stein et al., 1987; 
Karplus et ak, 1987), and protein folding is a complex process of "self binding," 
rather than binding to another molecule. Spin glass models stress the idea that the 
potential surface guiding protein folding is likely to be very complex with many 
local minima. Proteins, once folded, presumably "breathe" by undergoing transitions 
between these minima. Clothia (1987) and Karplus et al. (1987) comment that 
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famil ies  of  evo lu t iona ry  re la ted prote ins  unde rgo  shape  de fo rma t ions  of  their  crys- 
tal l ized form on  the same scale as the b rea th ing  de fo rmat ions  of  a single prote in .  

This suggests that  the range  of  readily ava i lab le  shape  de fo rma t ions  of  prote ins ,  

gu ided  by i n t r amolecu l a r  forces, is closely related to the range  of  shape  a nd  func t ion  
de fo rma t ions  in  pro te in  evolu t ion .  In  tu rn ,  the func t ion  of  p ro te ins  in b i n d i n g  

l igands  a n d  ca ta lyz ing react ions  is p r imar i ly  due  to the s imi lar  shape  and  force 

propert ies .  Might  it be the case that  the statistical character  o f  the potent ia l  surface 
unde r ly ing  fo ld ing  of  pro te ins  is in t imate ly  related to the statistical character  of  
adapt ive  l andscapes  in pro te in  evo lu t ion?  I f  so, then  spin glass models ,  or the N K  

model  or a s imi lar  improved  model  may capture  the right statistical features of  both.  

This work was partially supported under ONR grant N00014-85-K-0258 and under 
NIH GM 40186. 
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