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Abstract
Introduction:

An irrational number is a number that cannot be expressed as a ratio of two
numbers, or a fraction. Commonly known irrational numbers are the ratio π of
a circle’s circumference to its diameter, Euler’s number e, the golden ratio φ,
and the square root of two. All square roots of natural numbers, other than of
perfect squares, are irrational. When expressed as decimals, irrational numbers
do not repeat or terminate.
History:

According to Wikipedia, "The first proof of the existence of irrational num-
bers is usually attributed to a Pythagorean (possibly Hippasus of Metapontum),
who probably discovered them while identifying sides of the pentagram. The
then-current Pythagorean method would have claimed that there must be some
sufficiently small, indivisible unit that could fit evenly into one of these lengths
as well as the other."
Task For This Project:

In this project, I will be proving that
√

2 is irrational (by contradiction),
explaining continued fractions and showing the continued fraction for e,

√
2,

and π, and writing Python code that approximates e,
√

2, and π to a requested
number of digits.

Context/Work
Proving that

√
2 is irrational by contradiction:

1. Let’s assume that
√

2 is rational, meaning it can be written as the ratio
of two integers, a and b:

√
2 = a

b

Where b 6= 0 and we assume that a and b have no common factors. If common
factors exist, we cancel them in the numerator and denominator.
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2. Squaring both sides of the equation gives us:

2 = a2

b2

3. Which implies:

a2 = 2b2

4. This means that
√
a must be even, since

√
a is 2 multiplied by some

number. We know this to be true because the multiplication of two even
numbers will always be even.

5. This also means that a itself is even because if a was odd, a ∗ a would be
odd as well.

6. Since a is an even number, it is 2 times another whole number.

a = 2k

7. If we substitute a = 2k into the squared original equation, we get:

2 = (2k)2

b2

2 = 4k2

b2

2b2 = 4k2

b2 = 2k2

8. This means that b2 is even, which follows that b itself is even.

9. This is where there is a contradiction. If a and b are both even
numbers, then a

b is not in its simplest form and still has common factors.
This is a contradiction because we assumed that the equation was rational
and had no common factors from the start. Therefore,

√
2 must be

irrational.
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Continued Fractions:
A continued fraction is a fraction of infinite length whose denominator is a

quantity plus a fraction, which latter fraction has a similar denominator, and
so on. Continued fractions are great ways to express irrational numbers like e,
π, and

√
2.

Interesting Facts:
• John Wallis first used the term "continued fraction" in his Arithmetica
Infinitorum of 1653.

• Another word for a continued fraction is anthyphairetic ratio.
The basic form of a continued fraction is as follows:

a0 +
b1

a1 +
b2

a2 +
b3

a3 + · · ·
where an and bn are either rational numbers, real numbers, or complex

numbers. If bn = 1 for all n the expression is called a simple continued fraction.
If the expression has a finite amount of terms, it is called a finite continued
fraction. Similarly, if the expression has an infinite number of terms, it is called
an infinite continued fraction.

e as a continued fraction:

e = 2 +
1

1 +
1

2 +
2

3 +
3

4 + · · ·
π as a continued fraction:

π =
4

1 +
12

3 +
22

5 +
32

7 +
42

9 + · · ·√
2 as a continued fraction:

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

2 + · · ·
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Python Code For Approximating e:
Below is the code I wrote to approximate e:

1 n = input ( "How many dec imals o f e would you l i k e to approximate ? " )
2

3 sum = 0
4 des i red_e = N( e , d i g i t s = n + 1)
5 term_number = 0
6

7 whi le sum != des i red_e :
8 sum += 1/ f a c t o r i a l ( term_number )
9 term_number += 1

10

11 p r i n t "NOTE: The code w i l l approximate to the " + s t r (n) + " d i g i t s
you requested , but i t w i l l show " + s t r (n+1) + " d i g i t s to

prevent rounding e r r o r s . "
12 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
13 p r i n t " Estimated value o f e : " + s t r (N(sum , d i g i t s = n + 1) )
14 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
15 p r i n t " Actual va lue o f e : " + s t r ( des i red_e )
16 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
17 p r i n t " D i f f e r e n c e : " + s t r ( (N( des i red_e − sum , d i g i t s =

2) ) )
18 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"

Listing 1: Estimator for e

Explanation:
The code will ask how many digits of e you would like to approximate and

store it in variable n. The variable "sum" has an initial value of 0. While "sum" is
not equal to the actual value of e ("desired_e"), the series expansion for e (shown
below) will be continuously added to "sum", increasing the "term_number" (k)
by 1 integer each time until "sum" does equal "desired_e". When "sum" does
equal "desired_e", the code will exit the While loop. The code will then print the
value of e estimated with the variable "sum" with n+1 digits. Underneath that,
the code will print the actual value of e (stored as a constant by SageMathCloud)
with the variable "desired_e" with n+1 digits. The code will then calculate the
difference between the estimated and actual value of e and print that number.
NOTE: The difference should always be zero if the code is properly functioning.

Series Expansion Used for e:

e =
∞∑

k=0

1
k!
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Python Code For Approximating
√

2:
Below is the code I wrote to approximate

√
2:

1 n_2 = input ( "How many dec imals o f s q r t (2 ) would you l i k e to
approximate ? " )

2

3 sum_2 = 0
4 des ired_2 = N( s q r t (2 ) , d i g i t s = n_2 + 1)
5 term_number_2 = 0
6

7 whi le sum_2 != desired_2 :
8 sum_2 += ( f a c t o r i a l (2∗ ( term_number_2 ) +1) ) / ( (2^ (3 ∗ ( term_number_2

) +1) ) ∗( f a c t o r i a l ( term_number_2 ) ) ^2)
9 term_number_2 += 1

10

11 p r i n t "NOTE: The code w i l l approximate to the " + s t r (n_2) + "
d i g i t s you requested , but i t w i l l show " + s t r (n_2+1) + "
d i g i t s to prevent rounding e r r o r s . "

12 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
13 p r i n t " Estimated value o f 2 : " + s t r (N(sum_2 , d i g i t s = n_2 + 1) )
14 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
15 p r i n t " Actual va lue o f 2 : " + s t r ( des ired_2 )
16 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
17 p r i n t " D i f f e r e n c e : " + s t r ( (N( des ired_2 − sum_2 , d i g i t s =

2) ) )
18 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"

Listing 2: Estimator For
√

2

Explanation:
The code for approximating

√
2 is essentially the same as the code for ap-

proximating e. The only difference is in the variables and the series expansions.

Series Expansion Used for
√

2:

√
2 =

∞∑
k=0

(2k + 1)!
23k+1 (k!)2
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Python Code For Approximating π
Below is the code I wrote to approximate π:

1 n_pi = input ( "How many dec imals o f p i would you l i k e to approximate
? " )

2

3 sum_pi = 0
4 des i r ed_pi = N( pi , d i g i t s = n_pi + 1)
5 term_number_pi = 0
6

7 whi le sum_pi != des i r ed_pi :
8 sum_pi += (1/(16^ term_number_pi ) ) ∗ ( ( 4 / ( 8 ∗ ( term_number_pi ) +1) )

−(2/(8∗( term_number_pi ) +4) ) −(1/(8∗( term_number_pi ) +5) ) −(1/(8∗(
term_number_pi ) +6) ) )

9 term_number_pi += 1
10

11 p r i n t "NOTE: The code w i l l approximate to the " + s t r ( n_pi ) + "
d i g i t s you requested , but i t w i l l show " + s t r ( n_pi+1) + "
d i g i t s to prevent rounding e r r o r s . "

12 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
13 p r i n t " Estimated value o f p i : " + s t r (N( sum_pi , d i g i t s = n_pi + 1) )
14 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
15 p r i n t " Actual va lue o f p i : " + s t r ( des i r ed_pi )
16 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
17 p r i n t " D i f f e r e n c e : " + s t r ( (N( des i r ed_pi − sum_pi ,

d i g i t s = 2) ) )
18 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"

Listing 3: Estimator For π

Explanation:
The code for approximating π is essentially the same as the code for ap-

proximating e and
√

2. The only difference is in the variables and the series
expansions.

Series Expansion for π (Bailey–Borwein–Plouffe Formula):

π =
∞∑

k=0

[
1

16k

(
4

8k + 1 −
2

8k + 4 −
1

8k + 5 −
1

8k + 6

)]
Interestingly enough, the code for approximating π gave me the most trouble.

The series expansions that I had previously used in the code either did not
converge fast enough or somehow made the variable "sum_pi" infinitely locked
in the While loop. After some research and trial and error, I discovered the
Bailey–Borwein–Plouffe Formula and decided to try it. It worked perfectly.
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Conclusion
Overall, this has been my favorite project. The code was fairly challenging and I
initially ran into a couple of issues, but this was the first project where I figured
the code out on my own. While I went to Mr. Abell when technical issues
arose, the basic structure of the code was my own. In addition, this is the first
project that I started well in advance of the due date. I usually try to figure the
project out the day it is assigned, but then I put it off until the last few days.
This time, I had finished the code a week or two before the due date, making it
possible for me to write the report without any stress.

I have really enjoyed brushing up my Python skills and learning LATEX this
year, and I hope I can continue to use these tools in the future, whether it be
for school or just for fun.
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