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In [1]: options(jupyter.plot_mimetypes ='image/png')

1 ** THE EFFECT OF HYPOXIA ON HUMAN NEUTROPHILS **

In this study, the effects of Hypoxia on human Neutrophils were investigated in order to iden-
tify the possible involvement of inflammatory response in adverse prognosis of hypoxia-related
disease, such as pulmonary hypertension and myocardial infarction. Primary cultures of human
neutrophils were studied in both normal and hypoxia conditions. A gene expression profile of the
neutrophils in both conditions were done after centain amounts of time in culture, and quantified
using Affymetrix GeneChip HGU133 PLUS 2. The study was conducted on two separate samples.

This report aims to estimate gene expression levels, and analyse the results to identify the
genes that are changing between the two conditions, defining the potential pathways that hypoxia
may have altered in neutrophils.

1.1 ** Data Analysis **

Workflow Step 1: Load packages with data from Bioconductor, library(affy) - mas5, rma, li-
brary(puma)

Step 2: Load and read data, create affybatch. Annotate with pData.
Step 3: Analysis of gene expression data with different methods and normalisation techniques.

- Create eset - Extract gene expression - First diagnostic using density() and boxplot() - Normali-
sation by log2 if required

Step 4: Diagnostics of the data with plotting techniques - MAPlot - boxplot
Step 5: Differential Expression Analysis - For puma, combine the data using an bayesian Hierar-

chical model - Check the dimension and the pData() for the eset of the combined values. Calculate
the FC and plot the data with a MA plot using the command ma.plot()
- MAPlot - use of limma for DE analysis. Remember the three core steps of limma * Step 1: build
the design contrast matrix * Step 2: fit the linear model * Step 3: calculate the p-values and FDRs
with a empirical Bayes test

Step 6: Visualisation of Data with PCA - perform PCA in R using the command prcomp() - It
needs the traspose command t() since the input for the prcomp() wants the genes in the columns
- For probabilistic PCA you can use pumaPCA()

Step 7: Hierarchical clustering of DE (Differentially Expressed) genes - To perform this we need
to activate a library called gplots. We will use the command heatmap.2(). - We do clustering a
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the selected genes from our DE analysis this is to search for patterns in of differentially regulatend
pathways.

Step 8: Functional/Pathway analysis of DE targets using PANTHER or DAVID
** FEEDBACK: well organised workflow. You need to add more details for the throsholds used

and teh parameters of the analysis. This would make the analysis reproducible **

1.1.1 Step 1:

In [2]: library(affy)

Loading required package: BiocGenerics

Loading required package: parallel

Attaching package: BiocGenerics

The following objects are masked from package:parallel:

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

clusterExport, clusterMap, parApply, parCapply, parLapply,

parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from package:stats:

IQR, mad, xtabs

The following objects are masked from package:base:

anyDuplicated, append, as.data.frame, as.vector, cbind, colnames,

do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl,

intersect, is.unsorted, lapply, lengths, Map, mapply, match, mget,

order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,

rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,

union, unique, unlist, unsplit

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with

'browseVignettes()'. To cite Bioconductor, see

'citation("Biobase")', and for packages 'citation("pkgname")'.

This step loads the affy package, which is part of the BioConductor project, allowing for data
analysis and exploration of Affymetrix oligonucleotide array probe level data. It summarises the
probe set intensities, forming one expression measure (data available for analysis) for each gene.
The package includes plotting functions for the probe level data useful for quality control, making
it useful in the initial analysis of the data, it includes plotting functions for the data that can be
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useful for quality control of data, RNA degradation assessments, normaliasation and background
correction procedures. It also allows for probe level data to be converted to expression measures.
In this project, MAS 5.0 and RMA are used for perform the analysis.

1.1.2 Step 2:

Set working directory

In [3]: setwd("~/Autumn2016/ProjectC/data_projectC")

In [4]: getwd()

In order to load the data that is required, a working directory must be set, leading to where the
data is saved.

In [5]: hypoxia_filenames <- c("LPGMa.CEL","LPGMb.CEL","LPHa.CEL","LPHb.CEL")

affybatch.hypoxia <- ReadAffy(filenames=hypoxia_filenames)

The files that contain the data are saved in the .CEL format, indicating the files contain mea-
sured intensities and locations for an array that has been hybridised.

In [6]: show(affybatch.hypoxia)

Warning message:

replacing previous import AnnotationDbi::tail by utils::tail when loading hgu133plus2cdfWarning message:

replacing previous import AnnotationDbi::head by utils::head when loading hgu133plus2cdf

AffyBatch object

size of arrays=1164x1164 features (18 kb)

cdf=HG-U133_Plus_2 (54675 affyids)

number of samples=4

number of genes=54675

annotation=hgu133plus2

notes=

The data shows the size of the array is 1154x1164 (18kb), cdf maps each gene that is in the array
(54675 genes), and there are 4 samples.

In [7]: phenoData(affybatch.hypoxia)

pData(affybatch.hypoxia)

Out[7]: An object of class 'AnnotatedDataFrame'

sampleNames: LPGMa.CEL LPGMb.CEL LPHa.CEL LPHb.CEL

varLabels: sample

varMetadata: labelDescription

pData retrieves information on experimental phenotypes that are recorded.

In [8]: pData(affybatch.hypoxia)<- data.frame(

"Condition"=c("Normal", "Normal", "Hypoxia", "Hypoxia"),

"Sample"=c("1", "2", "1", "2"),

row.names=rownames(pData(affybatch.hypoxia)))

pData(affybatch.hypoxia)
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1.1.3 Step 3:

This step involves the analysis of gene expression data with different methods and normalisation
techniques. The methods convert the probe level data to expression values, which is achieved
through: * Reading in probe level data * Background correction * Normalization * Probe specific
background correction * Summarising the probe set values into one expression measure

RMA and MAS 5.0 creates two different types of ExpressionSets, from which the gene expres-
sion values will be extracted.

In [9]: eset_rma<-rma(affybatch.hypoxia)

show(eset_rma)

Background correcting

Normalizing

Calculating Expression

ExpressionSet (storageMode: lockedEnvironment)

assayData: 54675 features, 4 samples

element names: exprs

protocolData

sampleNames: LPGMa.CEL LPGMb.CEL LPHa.CEL LPHb.CEL

varLabels: ScanDate

varMetadata: labelDescription

phenoData

sampleNames: LPGMa.CEL LPGMb.CEL LPHa.CEL LPHb.CEL

varLabels: Condition Sample

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hgu133plus2

In [10]: eset_mas5<-mas5(affybatch.hypoxia)

show(eset_mas5)

background correction: mas

PM/MM correction : mas

expression values: mas

background correcting...done.

54675 ids to be processed

| |

|####################|

ExpressionSet (storageMode: lockedEnvironment)

assayData: 54675 features, 4 samples

element names: exprs, se.exprs

protocolData

sampleNames: LPGMa.CEL LPGMb.CEL LPHa.CEL LPHb.CEL

varLabels: ScanDate

varMetadata: labelDescription

phenoData
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sampleNames: LPGMa.CEL LPGMb.CEL LPHa.CEL LPHb.CEL

varLabels: Condition Sample

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hgu133plus2

In [11]: e_rma<-exprs(eset_rma)

head(e_rma)

In [12]: e_mas5<-exprs(eset_mas5)

head(e_mas5)

** FEEDBACK: this is very clear well done.**

In [13]: density(e_rma)

density(e_mas5)

Out[13]:

Call:

density.default(x = e_rma)

Data: e_rma (218700 obs.); Bandwidth 'bw' = 0.1711

x y

Min. : 1.276 Min. :8.300e-07

1st Qu.: 4.654 1st Qu.:1.038e-02

Median : 8.031 Median :4.186e-02

Mean : 8.031 Mean :7.396e-02

3rd Qu.:11.408 3rd Qu.:1.444e-01

Max. :14.785 Max. :2.408e-01

Out[13]:

Call:

density.default(x = e_mas5)

Data: e_mas5 (218700 obs.); Bandwidth 'bw' = 14.33

x y

Min. : -42.87 Min. :0.000e+00

1st Qu.:16716.38 1st Qu.:2.380e-07

Median :33475.62 Median :7.530e-07

Mean :33475.62 Mean :5.338e-05

3rd Qu.:50234.86 3rd Qu.:3.687e-06

Max. :66994.10 Max. :1.014e-02

In [14]: par(mfrow=c(1,1))

plot(density(e_rma[,1]),col="red", main="RMA Estimation")
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lines(density(e_rma[,2]),col="blue")

lines(density(e_rma[,3]),col="green")

lines(density(e_rma[,4]),col="purple")

plot(density(e_mas5[,1]),col="red",main="Mas5 Estimation")

lines(density(e_mas5[,2]),col="blue")

lines(density(e_mas5[,3]),col="green")

lines(density(e_mas5[,4]),col="purple")

Out[14]:

Out[14]:
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** FEEDBACK: the problem you are having with the above boxplot is beacuse you have not
logged the data. **

In [15]: par(mfrow=c(1,1))

boxplot((e_rma), xlab="Neutrophil samples", ylab="Gene Expression", main="Boxplot of gene expression extracted using rma")

boxplot((e_mas5), xlab="Neutrophil samples", ylab="Gene Expression", main="Boxplot of gene expression extracted using mas5")

Out[15]:
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Out[15]:
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In [16]: log2e_mas5<-log2(e_mas5)

head(log2e_mas5)

In [17]: density(log2e_mas5)

Out[17]:

Call:

density.default(x = log2e_mas5)

Data: log2e_mas5 (218700 obs.); Bandwidth 'bw' = 0.2168

x y

Min. :-3.749 Min. :1.800e-07
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1st Qu.: 1.358 1st Qu.:4.223e-03

Median : 6.466 Median :3.180e-02

Mean : 6.466 Mean :4.890e-02

3rd Qu.:11.574 3rd Qu.:8.519e-02

Max. :16.681 Max. :1.705e-01

In [18]: par(mfrow=c(1,1))

plot(density(log2e_mas5[,1]),col="red",main="Mas5 Estimation - normalised")

lines(density(log2e_mas5[,2]),col="blue")

lines(density(log2e_mas5[,3]),col="green")

lines(density(log2e_mas5[,4]),col="purple")

boxplot((log2e_mas5), xlab="Neutrophil samples", ylab="Gene Expression", main="Boxplot of gene expression extracted using mas5 - normalised")

Out[18]:
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Out[18]:

Expression values for mas5 and rma are extracted and the first diagnostics performed on the
data, using density() and boxplot(). Initial mas5 estimation showed the data was difficult to read
due to the large values of the outliers, therefore a log2 transformation was performed, to change
the scale and make the plots more readable. The transformation also eliminated much of the
negative values. No transformation or normalisation was required however, as the medians are
aligned, with no negative outliers. Therefore, further analysis is continued with the use of rma
extracted expressions.

In [19]: require(puma)

Loading required package: puma

Loading required package: oligo
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Loading required package: oligoClasses

Welcome to oligoClasses version 1.32.0

Attaching package: oligoClasses

The following object is masked from package:affy:

list.celfiles

Loading required package: Biostrings

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: IRanges

Loading required package: XVector

================================================================================

Welcome to oligo version 1.34.2

================================================================================

Attaching package: oligo

The following objects are masked from package:affy:

intensity, MAplot, mm, mm<-, mmindex, pm, pm<-, pmindex,

probeNames, rma

Loading required package: mclust

Package 'mclust' version 5.2

Type 'citation("mclust")' for citing this R package in publications.

puma (Propagating Uncertainty in Microarray Analysis) is another bioconductor package. Mi-
croarrays measure the expression level of thousands of genes simultaneously, therefore there are
many significant soutces of uncertainties associated with it; these uncertainties must be consid-
ered to accurately infer from the data. Earlier methods used (mas5 and rma) only provide single
point estimates that summarises the target concentration. By using probabilistic models such as
puma for probe-level analysis, it is possible to associate gene expression levels with credibility
intervals that quantify the measurement uncentainty associated with the estimate of target con-
centration with a sample. puma performs analysis through: * Calculation of expression levels and
confidence measures for those levels from raw .CEL data * Combine uncertainty information from
replicated arrays * Determine differential expression between conditions, or between more com-
plex contrasts such as interaction terms * Cluster data taking the expression level uncertainty into
account * Perform a noise-propagation version of principal compinent analysis (PCA)

In [20]: eset_puma<-mmgmos(affybatch.hypoxia)

show(eset_puma)

Model optimising ...

Expression values calculating ...
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Done.

Expression Set (exprReslt) with

54675 genes

4 samples

An object of class 'AnnotatedDataFrame'

sampleNames: LPGMa.CEL LPGMb.CEL LPHa.CEL LPHb.CEL

varLabels: Condition Sample

varMetadata: labelDescription

In [21]: eset_puma_normd <-pumaNormalize(eset_puma)

In [22]: e_puma<-exprs(eset_puma)

head(e_puma)

In [23]: density(e_puma)

Out[23]:

Call:

density.default(x = e_puma)

Data: e_puma (218700 obs.); Bandwidth 'bw' = 0.2729

x y

Min. :-35.061 Min. :0.000e+00

1st Qu.:-22.699 1st Qu.:2.170e-06

Median :-10.336 Median :2.474e-05

Mean :-10.336 Mean :2.020e-02

3rd Qu.: 2.026 3rd Qu.:2.640e-02

Max. : 14.388 Max. :1.145e-01

In [24]: e_puma_normd<-exprs(eset_puma_normd)

head(e_puma_normd)

In [25]: density(e_puma_normd)

Out[25]:

Call:

density.default(x = e_puma_normd)

Data: e_puma_normd (218700 obs.); Bandwidth 'bw' = 0.2729

x y

Min. :-35.061 Min. :0.000e+00

1st Qu.:-22.699 1st Qu.:2.170e-06

Median :-10.336 Median :2.474e-05

Mean :-10.336 Mean :2.020e-02

3rd Qu.: 2.026 3rd Qu.:2.640e-02

Max. : 14.388 Max. :1.145e-01
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After performing pumaNormalize() on the data, the first diagnostic tests showed that there is
no difference to the data prior to normalisation, therefore indicating that the pumadata is already
normalised.

In [26]: plot(density(e_puma[,1]),col="red", main="PUMA Estimation")

lines(density(e_puma[,2]),col="blue")

lines(density(e_puma[,3]),col="green")

lines(density(e_puma[,4]),col="purple")

Out[26]:

In [27]: boxplot((e_puma), xlab="Neutrophil samples", ylab="Gene Expression", main="Boxplot of gene expression extracted using puma")

Out[27]:
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Although the data is shown to be normalized, and the medians are aligned, it can also be seem
from the boxplot that there is a large number of negative outliers, therefore the negative gene
expression values are set to zero, to further normalise the data.

In [28]: for (i in 1:4) {

y<-e_puma[,i]

y[y<0] <-0

e_puma[,i] <- y

}

head(e_puma)

In [29]: density(e_puma)

Out[29]:

Call:
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density.default(x = e_puma)

Data: e_puma (218700 obs.); Bandwidth 'bw' = 0.2384

x y

Min. :-0.7153 Min. :0.0000002

1st Qu.: 3.0348 1st Qu.:0.0172600

Median : 6.7849 Median :0.0533883

Mean : 6.7849 Mean :0.0665816

3rd Qu.:10.5351 3rd Qu.:0.0965064

Max. :14.2852 Max. :0.4313578

In [30]: plot(density(e_puma[,1]), col="red", main="PUMA Estimation")

lines(density(e_puma[,2]),col="green")

lines(density(e_puma[,3]),col="blue")

lines(density(e_puma[,4]),col="purple")

Out[30]:
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In [31]: boxplot(e_puma,main="Boxplot of gene expression extracted using puma - normalised", xlab="Neutrophil Samples", ylab="gene expression")

Out[31]:
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Boxplots show the differences in probe intensity behaviour between arrays. Boxplots are useful
in the visualisation of data for first diagnostics, ensuring all the samples are comparable. Box
plots show are able to illustrate: * Median * Upper Quartile * Lower Quartile * Range * Individual
extreme values (Outliers)

The boxplots above show that gene expression extracted using rma does not need to be nor-
malised as the medians are aligned, and no negative outliers. The mas5 boxplot showed the data
must be log2 transformed in order for comparison to be possible. For puma, the results needed
to be normalised due to the high number of negative outliers present, although the medians are
aligned.

All three analysis techniques showed a similar range of values following normalisation.

In [32]: par(mfrow=c(2,2))

MAplot(e_rma)

Out[32]:
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In [33]: par(mfrow=c(2,2))

MAplot(e_puma)

Out[33]:
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In MA plots, each Affymetrix marray is compared to a pseudo-array, which consist of the
median intensity of each probe over all arrays, the plot shows to what extent the variability in
expression depends on the expression level. M is the difference between the intensity of a probe
on the array and the median intensity of that probe over all arrays A is the average intensity of a
probe on that array and the median intensity of that probe over all arrays.

The cloud of data points in the MA plot is centered around M=0, based on the assumption that
the majority of the genes are not differentially expressed, an the number of upregulated genes is
similar to the number of downregulated genes.

From the MA plots above, it can be deduced that there appears to be a greater number of
downregulated genes in neutrophils under hypoxia conditions than in normal conditions.

** FEEDBACK: well done, this is clear and well annotated.**
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1.1.4 Step 5:

In [36]: eset_puma_comb<- pumaCombImproved(eset_puma_normd)

pumaComb expected completion time is 3 hours

...20%...40%...60%...80%...100%

...

In [65]: save(eset_puma_comb, file="eset_pumacomb.RDA")

In [34]: load("eset_pumacomb.RDA")

ls()

In [35]: show(eset_puma_comb)

ExpressionSet (storageMode: lockedEnvironment)

assayData: 54675 features, 4 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: Hypoxia.1 Normal.1 Hypoxia.2 Normal.2

varLabels: Condition Sample

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

In [36]: pData(eset_puma_comb)

** FEEDBACK: the proble you having here is that the eset_puma_comb should only have two
samples, one for each condition you have. This is due to teh fact that you did not use pData() on
the eset_puma. **

In [37]: dim(eset_puma_comb)

In [38]: hypoxia_comb_puma<-exprs(eset_puma_comb)

for(i in 1:4) {

temp<-hypoxia_comb_puma[,i]

temp[temp<0] <-0

hypoxia_comb_puma[,i]<- temp

}

In [39]: FC_puma<- hypoxia_comb_puma[,1:2] - hypoxia_comb_puma[,3:4]

colnames(FC_puma) <- c("Hypoxia-Normal 1","Hypoxia-Normal 2")

head(FC_puma)

In [40]: MAplot(FC_puma)
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Warning message in KernSmooth::bkde2D(x, bandwidth = bandwidth, gridsize = nbin, :

Binning grid too coarse for current (small) bandwidth: consider increasing 'gridsize'Warning message in KernSmooth::bkde2D(x, bandwidth = bandwidth, gridsize = nbin, :

Binning grid too coarse for current (small) bandwidth: consider increasing 'gridsize'

Out[40]:

Out[40]:
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** FEEDBACK: wrong annotation is also why the MA plot do not look right. **

In [41]: FC_rma<- e_rma[,1:2] - e_rma[,3:4]

colnames(FC_rma) <- c("Hypoxia-Normal 1","Hypoxia-Normal 2")

head(FC_rma)

In [42]: MAplot(FC_rma)

Out[42]:
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Out[42]:
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In [43]: groups<-c("H1","N1","H2","N2")

hypoxia_table<-data.frame(sampleNames(eset_puma_comb),groups)

group1<-factor(groups[1:2])

group2<-factor(groups[3:4])

group1

group2

In [44]: hypoxia_table

In [45]: par(mfrow=c(2,2))

MAplot(eset_puma_comb)
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Warning message in KernSmooth::bkde2D(x, bandwidth = bandwidth, gridsize = nbin, :

Binning grid too coarse for current (small) bandwidth: consider increasing 'gridsize'Warning message in KernSmooth::bkde2D(x, bandwidth = bandwidth, gridsize = nbin, :

Binning grid too coarse for current (small) bandwidth: consider increasing 'gridsize'Warning message in KernSmooth::bkde2D(x, bandwidth = bandwidth, gridsize = nbin, :

Binning grid too coarse for current (small) bandwidth: consider increasing 'gridsize'Warning message in KernSmooth::bkde2D(x, bandwidth = bandwidth, gridsize = nbin, :

Binning grid too coarse for current (small) bandwidth: consider increasing 'gridsize'

Out[45]:

In [46]: library(limma)

group<-factor(c("Normal","Normal","Hypoxia","Hypoxia"))

design<-model.matrix(~0+group)

colnames(design)<-c("Normal","Hypoxia")

contrast.matrix_puma<- makeContrasts(Normal,Hypoxia,levels=design)
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design

contrast.matrix_puma

fit<-lmFit(eset_puma,design)

fit2<-contrasts.fit(fit,contrast.matrix_puma)

fit3<-eBayes(fit2)

topDEGenes<-topTable(fit3, coef=1, adjust="BH", n=100, lfc=1)

topDEGenes

Attaching package: limma

The following object is masked from package:oligo:

backgroundCorrect

The following object is masked from package:BiocGenerics:

plotMA

Limma is a package for differential expression analysis of data arising from microarray exper-
iments. A linear model is fit to the expression data for each gene. Empirical Beyes (a shrinkage
method) is used to borrow information across genes making the analyses stable. Linear models
are used to analyse designed microarray experiments, allowing for very general experiments to be
analysed easily. Two matrices need to be specified. The design matrix provides a representation
of the different RNA targets which have been hybridized to the arrays. The contrast matrix al-
lows the coefficients designed by the design matrix to be combined into contrasts of interest. Each
contrast corresponds to a comparison of interest between the RNA targets.

In [47]: results_puma<-decideTests(fit3, method="global",lfc=1)

vennDiagram(results_puma)

Out[47]:
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The Venn Diagram shows that 3761 genes and 3390 genes were expressed in only normal and
only hypoxia conditions, respectively. 35170 genes were expressed in both normal and hypoxia
conditions.

In [48]: hist(fit3$p.value)

Out[48]:

28



In [49]: dim(topDEGenes)

In [50]: rownames(topDEGenes)

In [51]: write.table(rownames(topDEGenes),"/projects/ddda6a8e-2bca-47f5-b1d6-79b2c48d0e30/Autumn2016/ProjectC/data_projectC.txt")

In [52]: pumaDERes<-pumaDE(eset_puma_comb)

pumaDERes

Out[52]: DEResult object:

DEMethod = pumaDE

statisticDescription = Probability of Positive Log Ratio (PPLR)

statistic = 54675 probesets x 7 contrasts
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In [53]: getwd()

In [54]: write.reslts(pumaDERes, file="pumaDERes")

In [55]: library(hgu133plus2.db)

library(annotate)

geneProbes<-as.character(rownames(topDEGenes))

annotated_list<-select(hgu133plus2.db, geneProbes,c("SYMBOL","GENENAME"))

annotated_list

Loading required package: AnnotationDbi

Loading required package: org.Hs.eg.db

Loading required package: DBI

Loading required package: XML

'select()' returned 1:many mapping between keys and columns

In [56]: annotated_list[,2]

In [57]: write.table(annotated_list[,2],"/projects/ddda6a8e-2bca-47f5-b1d6-79b2c48d0e30/Autumn2016/ProjectC/data_projectC/SYMBOL.txt")

In [58]: dir()

In [59]: pumaDE_stat<-read.csv("pumaDERes_statistics.csv")

pumaDE_FC<-read.csv("pumaDERes_FCs.csv")

In [60]: head(pumaDE_stat)

In [61]: probeid<-pumaDE_stat[,1]

PPLR_N1vsH1<-pumaDE_stat[,2]

PPLR_N2vsH2<-pumaDE_stat[,5]

pumaRes<-data.frame(probeid,PPLR_N1vsH1,PPLR_N2vsH2)

pumaRes

In [62]: down_N1vsH1<-pumaRes[pumaRes$PPLR_N1vsH1<=0.2,1]

up_N1vsH1<-pumaRes[pumaRes$PPLR_N1vsH1>=0.8,1]

down_N2vsH2<-pumaRes[pumaRes$PPLR_N2vsH2<=0.2,1]

up_N2vsH2<-pumaRes[pumaRes$PPLR_N2vsH2>=0.8,1]

downDE<-data.frame(match(down_N1vsH1,down_N2vsH2))

downDE<-downDE[!is.na(downDE)]

upDE<-data.frame(match(up_N1vsH1,up_N2vsH2))

upDE<-upDE[!is.na(upDE)]
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In [63]: DE<-data.frame(match(downDE,upDE))

DE<-DE[!is.na(DE)]

length(DE)

In [64]: head(pumaDE_FC)

In [65]: geneProbes<-as.character(pumaDE_FC$X)

annotated_list<-select(hgu133plus2.db,geneProbes,c("SYMBOL","GENENAME"))

DEGenes=annotated_list[pumaRes[DE,1],]

DEGenes

dim(DEGenes)

'select()' returned 1:many mapping between keys and columns

In [66]: group<-factor(c("Normal","Normal","Hypoxia","Hypoxia"))

design<-model.matrix(~0+group)

colnames(design)<-c("Normal","Hypoxia")

contrast.matrix_rma<- makeContrasts(Normal,Hypoxia,levels=design)

design

contrast.matrix_rma

fitrma<-lmFit(eset_rma,design)

fit2rma<-contrasts.fit(fit,contrasts=contrast.matrix_rma)

fit3rma<-eBayes(fit2rma)

topDEGenes_rma<-topTable(fit3, coef=1, adjust="BH", n=100, lfc=1)

topDEGenes_rma

dim(topDEGenes_rma)

In [67]: hist(fit3rma$p.value)

Out[67]:
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In [68]: results_rma<-decideTests(fit3rma, method="global",lfc=1)

vennDiagram(results_rma)

Out[68]:
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1.1.5 Step 6:

PCA is a mathematical algorithm that reduces the dimensionality of the data while retaining most
of the variation in the data set. It does so by identifying directions, called principal components,
along which the variation in the data is maximal. PCA plots check whether the overall variability
of the samples reflect their groupings.

In [69]: pca_hypoxia <- prcomp(t(e_rma))

plot(pca_hypoxia$x, xlab="Component 1", ylab="Component 2",

pch=unclass(as.factor(pData(eset_rma)[,1])),

col=unclass(as.factor(pData(eset_rma)[,2])), main="Standard PCA")
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groups<-paste(eset_rma$Sample, eset_rma$Condition, sep =" ")

legend(0,0,groups,pch=unclass(as.factor(pData(eset_rma)[,1]))

, col=unclass(as.factor(pData(eset_rma)[,2])))

Out[69]:

In [70]: pumapca_hypoxia=pumaPCA(eset_puma_normd)

plot(pumapca_hypoxia)

Iteration number: 1

Iteration number: 2

34



Iteration number: 3

Iteration number: 4

Iteration number: 5

Out[70]:

The two PCA plots show that the gene expressions of the neutrophils under the two conditions
do vary. This is clear on the plots as the points for the two hypoxia samples are on right side of the
plot, whereas the two normal samples are found on the left of the plot. It is unclear whether there
is a clear difference between the gene expressions of the two sample groups themselves; in order to
observe a clear difference between samples, more conditions are required, such as different levels
of hypoxia.
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1.1.6 Step 7:

Heat maps and clustering are often used in gene expression analysis studies to visualise the data
and for quality control. It is a graphical representation of the data where the individual values in
the matrix are represented as colours. They compares the level of gene expression of a number of
samples, allowing for immediate visualisation of the data by assigning different colours to each
gene, and it is possible to see clusters of genes with similar or hugely different expression values.

In [71]: library(gplots)

tID<-rownames(topDEGenes)

ind<-1

j<-1

for (i in 1: length(tID)) {

ind[j]<-which(rownames(eset_rma)==tID[i],arr.ind=TRUE)

j<-j+1

}

topExpr<-e_rma[ind,]

heatmap.2(topExpr, col=redgreen(75), scale="row",

key=TRUE, symkey=FALSE, density.info="none", trace="none", cexRow=0.5, cexCol=0.8)

Attaching package: gplots

The following object is masked from package:IRanges:

space

The following object is masked from package:stats:

lowess

Out[71]:
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In [72]: library(gplots)

tID<-rownames(topDEGenes)

ind<-1

j<-1

for (i in 1: length(tID)) {

ind[j]<-which(rownames(eset_puma)==tID[i],arr.ind=TRUE)

j<-j+1

}

topExpr<-e_puma[ind,]

heatmap.2(topExpr, col=redgreen(75), scale="row",
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key=TRUE, symkey=FALSE, density.info="none", trace="none", cexRow=0.5, cexCol=0.8)

Out[72]:

The heatmaps above are generated from eset_rma and eset_puma data, both showing similar
patterns of gene expression, as indicated by the colours. From both methods, it can be deduced
that a lot of genes that are expressed in samples order normal conditions are not expressed in
samples under hypoxia, confirming that hypoxia has an effect on neutrophil gene expression.

1.1.7 Step 8:

This step involves the functional/ pathway analysis of differentially expressed targets using PAN-
THER or DAVID. DAVID is the online Database for Annotation, Visualization and Integrated Dis-
covery, which can be used to convert a list of gene IDs. PANTHER (Protein ANalysis THrough
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Evolutionary Relationships) can be used to classify proteins and identify the key pathways in-
volved in the difference in gene expression observed. PANTHER is used in this project to identify
the key pathways in regulating gene expression in neutrophils under hypoxia and normal condi-
tions.

In [73]: setwd("~/Autumn2016/ProjectC/data_projectC")

In [82]: GeneList<-read.table("pantherGeneList.txt", fill=TRUE)

GeneList

In [83]: pantherChart<-read.table("pantherChart.txt", fill=TRUE)

pantherChart

Pathway analysis using PANTHER

From PANTHER, the gene list and the pathways they work in have been identified, with the
piechart showing the percentage of genes that are present in each pathway. The most prominent
pathway in the effects of hypoxia on human neutrophils is identified as the Inflammation medi-
ated by chemokine and cytokine signaling pathway.

1.1.8 Discussion

In this project, the aim was to stimate gene expression levels, and analyse the results to identify the
genes that are changing between the two conditions of normal and hypoxia, defining the potential
pathways that hypoxia may have altered in neutrophils. The methods of RMA and MAS5 were
used, and first diagnostics performed in order to identify the suitable method to continue with.
RMA was chosen as no further normalisation was required. The PUMA package was also used,
and the data combined using a Bayesian Hierarchical model, further analysis was done in order to
obtain the fold change in gene expression. Limma was used for Differential Expression Analysis,
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and the p-value calculated. The data was visualised using PCA, indicating that there is a clear
difference between the gene expression of neutrophils under normal, or hypoxia conditions. This
was further supported by the heatmaps generated.

Through the use of PANTHER, it was possible to identify the key pathways that are regulat-
ing the effects of hypoxia on human neutrophils - The Inflammation mediated by chemikine and
cytokine signaling pathway.
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