A (one dimensional) cellular automaton is a function1 F : Σ → Σ with the property that there is a K > 0 such that F (x)i depends only on the 2K + 1 coordinates xi−K , xi−K+1, . . . , xi−1, xi, xi+1, . . . , xi+K . A periodic point of σ is any x such that σ^p (x) = x for some p ∈ N, and a periodic point of F is any x such that F^q (x) = x for some q ∈ N. Given a cellular automaton F, a point x ∈ Σ is jointly periodic if there are p, q ∈ N such that σ^p (x) = F^q (x) = x, that is, it is a periodic point under both functions.
This project aims to explore the nature of one-dimensional Cellular Automata, in the hope of finding the structure of cellular automata through its periodic points.
License: MIT
ubuntu2004
U ���c � @ s d dl Z G dd� d�ZdS )� Nc @ s e Zd Zdd� Zdd� ZdS )�Automatac C s |j | _ || _d S )N)�state�rule)�self�initial_conditionr � r �0/home/user/Code/Simple_Cell_Automata/Automata.py�__init__ s zAutomata.__init__c C s* t t�|d ��D ]}| �| j�| _qd S )N� )�range�math�floorr r )r Zsteps�ir r r �evolve s zAutomata.evolveN)�__name__� __module__�__qualname__r r r r r r r s r )r r r r r r �<module> s