Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

A (one dimensional) cellular automaton is a function1 F : Σ → Σ with the property that there is a K > 0 such that F (x)i depends only on the 2K + 1 coordinates xi−K , xi−K+1, . . . , xi−1, xi, xi+1, . . . , xi+K . A periodic point of σ is any x such that σ^p (x) = x for some p ∈ N, and a periodic point of F is any x such that F^q (x) = x for some q ∈ N. Given a cellular automaton F, a point x ∈ Σ is jointly periodic if there are p, q ∈ N such that σ^p (x) = F^q (x) = x, that is, it is a periodic point under both functions.

This project aims to explore the nature of one-dimensional Cellular Automata, in the hope of finding the structure of cellular automata through its periodic points.

2034 views
License: MIT
ubuntu2004
U

���c��@sRddlZddlZGdd�d�ZGdd�de�ZGdd�de�ZGdd	�d	e�ZdS)
�Nc@seZdZddd�ZdS)�InitialCondition�@cCs
||_dS�N)�size��selfr�r�9/home/user/Code/Simple_Cell_Automata/InitialConditions.py�__init__szInitialCondition.__init__N)r��__name__�
__module__�__qualname__r
rrrr	rsrc@seZdZdd�Zdd�ZdS)�
FarRightIsOnecCs|�|�|_t�||�dSr��_build_state�staterr
rrrr	r
	szFarRightIsOne.__init__cCsdg|}d|d<|S)Nr������r)rrrrrr	r
s
zFarRightIsOne._build_stateN�rr
rr
rrrrr	rsrc@seZdZdd�Zdd�ZdS)�MiddleStateIsOnecCs|�|�|_t�||�dSrrrrrr	r
szMiddleStateIsOne.__init__cCs,dg|}t�t|�d�d}d||<|S)Nr�r)�mathZfloor�len)rrrZmiddle_indexrrr	rs
zMiddleStateIsOne._build_stateNrrrrr	rsrc@seZdZdd�ZdS)�RandomStatecCs$dd�t|�D�|_t�||�dS)NcSsg|]}t�dd��qS)rr)�randomZrandint)�.0�irrr	�
<listcomp>sz(RandomState.__init__.<locals>.<listcomp>)�rangerrr
rrrr	r
szRandomState.__init__Nrrrrr	rsr)rrrrrrrrrr	�<module>s