A (one dimensional) cellular automaton is a function1 F : Σ → Σ with the property that there is a K > 0 such that F (x)i depends only on the 2K + 1 coordinates xi−K , xi−K+1, . . . , xi−1, xi, xi+1, . . . , xi+K . A periodic point of σ is any x such that σ^p (x) = x for some p ∈ N, and a periodic point of F is any x such that F^q (x) = x for some q ∈ N. Given a cellular automaton F, a point x ∈ Σ is jointly periodic if there are p, q ∈ N such that σ^p (x) = F^q (x) = x, that is, it is a periodic point under both functions.
This project aims to explore the nature of one-dimensional Cellular Automata, in the hope of finding the structure of cellular automata through its periodic points.
LEMMA Research Project / Code / Simple_Cell_Automata / __pycache__ / InitialConditions.cpython-38.pyc
2034 viewsLicense: MIT
ubuntu2004
U ���c� � @ sR d dl Z d dlZG dd� d�ZG dd� de�ZG dd� de�ZG dd � d e�ZdS ) � Nc @ s e Zd Zddd�ZdS )�InitialCondition�@ c C s || _ d S �N)�size��selfr � r �9/home/user/Code/Simple_Cell_Automata/InitialConditions.py�__init__ s zInitialCondition.__init__N)r ��__name__� __module__�__qualname__r r r r r r s r c @ s e Zd Zdd� Zdd� ZdS )� FarRightIsOnec C s | � |�| _t�| |� d S r ��_build_state�stater r r r r r r s zFarRightIsOne.__init__c C s dg| }d|d<