A (one dimensional) cellular automaton is a function1 F : Σ → Σ with the property that there is a K > 0 such that F (x)i depends only on the 2K + 1 coordinates xi−K , xi−K+1, . . . , xi−1, xi, xi+1, . . . , xi+K . A periodic point of σ is any x such that σ^p (x) = x for some p ∈ N, and a periodic point of F is any x such that F^q (x) = x for some q ∈ N. Given a cellular automaton F, a point x ∈ Σ is jointly periodic if there are p, q ∈ N such that σ^p (x) = F^q (x) = x, that is, it is a periodic point under both functions.
This project aims to explore the nature of one-dimensional Cellular Automata, in the hope of finding the structure of cellular automata through its periodic points.
License: MIT
ubuntu2004
/* * Copyright (C) 2004 Bryant Lee * * This file is part of FPeriod. * * FPeriod is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * FPeriod is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with FPeriod; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * RecNode * A record node. Stores information for all the runs for a given period. * * Written by: Bryant Lee * Date: 11/4/04 */ #include "RecNode.h" #include <map> //constructor RecNode::RecNode(unsigned int icPeriod, unsigned long long iNumTrials) { currPeriod = icPeriod; sumPeriod = 0; sumPreperiod = 0; numPeriodic = 0; numTrials = iNumTrials; largestorbit = 0; //for FProbPeriod: pending flag says that this RecNode is not filled in yet // which is helpful in case of a crash //for FPeriod and FDense: this is not used pending = true; } //recordOrbit void RecNode::recordOrbit(unsigned long long orbit) { map<unsigned long long, unsigned long long>::iterator mult; if((mult = orbitMap.find(orbit)) != orbitMap.end()) { mult->second++; } else { orbitMap.insert(pair<unsigned long long, unsigned long long>(orbit,1)); } } //recordperiod void RecNode::recordPeriod(unsigned long long period, unsigned long long preperiod) { map<unsigned long long, unsigned long long>::iterator mult; if(period > largestorbit) largestorbit = period; sumPeriod += period; sumPreperiod += preperiod; if((mult = periodMap.find(period)) != periodMap.end()) { mult->second++; } else { periodMap.insert(pair<unsigned long long, unsigned long long>(period,1)); } if((mult = preperiodMap.find(preperiod)) != preperiodMap.end()) { mult->second++; } else { preperiodMap.insert(pair<unsigned long long,unsigned long long>(preperiod,1)); } } //recordPeriodicPeriod void RecNode::recordPeriodicPeriod(unsigned long long period) { map<unsigned long long,unsigned long long>::iterator mult; if((mult = periodicPeriodMap.find(period)) != periodicPeriodMap.end()) { mult->second++; } else { periodicPeriodMap.insert(pair<unsigned long long,unsigned long long>(period,1)); } } //fractionperiodic double RecNode::fractionPeriodic() { return ((double) numPeriodic)/((double) numTrials); } //numnonperiodic unsigned long long RecNode::numNonPeriodic() { return numTrials - numPeriodic; } //avgperiod double RecNode::avgPeriod() { return ((double) sumPeriod)/((double) numTrials); } //avgpreperiod double RecNode::avgPreperiod() { return ((double) sumPreperiod)/((double) numTrials); } //maxpreperiod double RecNode::maxPreperiod() { map<unsigned long long, unsigned long long>::const_reverse_iterator rit; rit = preperiodMap.rbegin(); if(rit != (map<unsigned long long, unsigned long long>::const_reverse_iterator) preperiodMap.rend()) return rit->first; else return 0; } //max period double RecNode::maxPeriod() { map<unsigned long long,unsigned long long>::const_reverse_iterator rit; rit = periodMap.rbegin(); if(rit != (map<unsigned long long,unsigned long long>::const_reverse_iterator) periodMap.rend()) return rit->first; else return 0; }