Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

A (one dimensional) cellular automaton is a function1 F : Σ → Σ with the property that there is a K > 0 such that F (x)i depends only on the 2K + 1 coordinates xi−K , xi−K+1, . . . , xi−1, xi, xi+1, . . . , xi+K . A periodic point of σ is any x such that σ^p (x) = x for some p ∈ N, and a periodic point of F is any x such that F^q (x) = x for some q ∈ N. Given a cellular automaton F, a point x ∈ Σ is jointly periodic if there are p, q ∈ N such that σ^p (x) = F^q (x) = x, that is, it is a periodic point under both functions.

This project aims to explore the nature of one-dimensional Cellular Automata, in the hope of finding the structure of cellular automata through its periodic points.

2037 views
License: MIT
ubuntu2004
U

)j�cS�@s"ddlmZGdd�dej�ZdS)�)�cellc@sDeZdZdd�Zedd��Zedd��Zedd��Zed	d
��Z	dS)�CellcCs$||_|jdkr |jdkr d|_dS)Nr�)�state_matrix�value�live_neighbors)�selfr�r	�,/home/user/Code/tomato_test/moore_fractal.py�updates

zCell.updatecCs|jS�N)Zmoore_neighborhood�rr	r	r
�	neighbors
szCell.neighborscCs
t|j�Sr)�sumrr
r	r	r
rszCell.live_neighborscCs|rdSdS)N)��rr�rrrr	��valr	r	r
�displayszCell.displaycCs|dk��rdSdS)Nrrr)�allrr	r	r
�from_displayszCell.from_displayN)
�__name__�
__module__�__qualname__r�propertyrr�staticmethodrrr	r	r	r
rs


rN)Ztomato.classesrZCellTemplaterr	r	r	r
�<module>s