Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563501 views
1
2
2 Generalized Morphism Category by Cospans
3
4
5
2.1 GAP Categories
6
7
2.1-1 IsGeneralizedMorphismCategoryByCospansObject
8
9
IsGeneralizedMorphismCategoryByCospansObject( object )  filter
10
Returns: true or false
11
12
The GAP category of objects in the generalized morphism category by cospans.
13
14
2.1-2 IsGeneralizedMorphismByCospan
15
16
IsGeneralizedMorphismByCospan( object )  filter
17
Returns: true or false
18
19
The GAP category of morphisms in the generalized morphism category by
20
cospans.
21
22
23
2.2 Properties
24
25
2.2-1 HasIdentityAsReversedArrow
26
27
HasIdentityAsReversedArrow( alpha )  property
28
Returns: true or false
29
30
The argument is a generalized morphism \alpha by a cospan a \rightarrow b
31
\leftarrow c. The output is true if b \leftarrow c is congruent to an
32
identity morphism, false otherwise.
33
34
35
2.3 Attributes
36
37
2.3-1 UnderlyingHonestObject
38
39
UnderlyingHonestObject( a )  attribute
40
Returns: an object in \mathbf{A}
41
42
The argument is an object a in the generalized morphism category by cospans.
43
The output is its underlying honest object.
44
45
2.3-2 Arrow
46
47
Arrow( alpha )  attribute
48
Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}(a,c)
49
50
The argument is a generalized morphism \alpha by a cospan a \rightarrow b
51
\leftarrow c. The output is its arrow a \rightarrow b.
52
53
2.3-3 ReversedArrow
54
55
ReversedArrow( alpha )  attribute
56
Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}(c,b)
57
58
The argument is a generalized morphism \alpha by a cospan a \rightarrow b
59
\leftarrow c. The output is its reversed arrow b \leftarrow c.
60
61
2.3-4 NormalizedCospanTuple
62
63
NormalizedCospanTuple( alpha )  attribute
64
Returns: a pair of morphisms in \mathbf{A}.
65
66
The argument is a generalized morphism \alpha: a \rightarrow b by a cospan.
67
The output is its normalized cospan pair (a \rightarrow d, d \leftarrow b).
68
69
2.3-5 PseudoInverse
70
71
PseudoInverse( alpha )  attribute
72
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,a)
73
74
The argument is a generalized morphism \alpha: a \rightarrow b by a cospan.
75
The output is its pseudo inverse b \rightarrow a.
76
77
2.3-6 GeneralizedInverseByCospan
78
79
GeneralizedInverseByCospan( alpha )  attribute
80
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,a)
81
82
The argument is a morphism \alpha: a \rightarrow b \in \mathbf{A}. The
83
output is its generalized inverse b \rightarrow a by cospan.
84
85
2.3-7 IdempotentDefinedBySubobjectByCospan
86
87
IdempotentDefinedBySubobjectByCospan( alpha )  attribute
88
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,b)
89
90
The argument is a subobject \alpha: a \hookrightarrow b \in \mathbf{A}. The
91
output is the idempotent b \rightarrow b \in \mathbf{G(A)} by cospan defined
92
by \alpha.
93
94
2.3-8 IdempotentDefinedByFactorobjectByCospan
95
96
IdempotentDefinedByFactorobjectByCospan( alpha )  attribute
97
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,b)
98
99
The argument is a factorobject \alpha: b \twoheadrightarrow a \in
100
\mathbf{A}. The output is the idempotent b \rightarrow b \in \mathbf{G(A)}
101
by cospan defined by \alpha.
102
103
2.3-9 NormalizedCospan
104
105
NormalizedCospan( alpha )  attribute
106
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,b)
107
108
The argument is a generalized morphism \alpha: a \rightarrow b by a cospan.
109
The output is its normalization by cospan.
110
111
112
2.4 Operations
113
114
2.4-1 GeneralizedMorphismFromFactorToSubobjectByCospan
115
116
GeneralizedMorphismFromFactorToSubobjectByCospan( beta, alpha )  operation
117
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(c,a)
118
119
The arguments are a a factorobject \beta: b \twoheadrightarrow c, and a
120
subobject \alpha: a \hookrightarrow b. The output is the generalized
121
morphism by cospan from the factorobject to the subobject.
122
123
124
2.5 Constructors
125
126
2.5-1 GeneralizedMorphismByCospan
127
128
GeneralizedMorphismByCospan( alpha, beta )  operation
129
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,c)
130
131
The arguments are morphisms \alpha: a \rightarrow b and \beta: c \rightarrow
132
b in \mathbf{A}. The output is a generalized morphism by cospan with arrow
133
\alpha and reversed arrow \beta.
134
135
2.5-2 GeneralizedMorphismByCospan
136
137
GeneralizedMorphismByCospan( alpha, beta, gamma )  operation
138
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,d)
139
140
The arguments are morphisms \alpha: a \leftarrow b, \beta: b \rightarrow c,
141
and \gamma: c \leftarrow d in \mathbf{A}. The output is a generalized
142
morphism by cospan defined by the composition the given three arrows
143
regarded as generalized morphisms.
144
145
2.5-3 GeneralizedMorphismByCospanWithSourceAid
146
147
GeneralizedMorphismByCospanWithSourceAid( alpha, beta )  operation
148
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,c)
149
150
The arguments are morphisms \alpha: a \leftarrow b, and \beta: b \rightarrow
151
c in \mathbf{A}. The output is a generalized morphism by cospan defined by
152
the composition the given two arrows regarded as generalized morphisms.
153
154
2.5-4 AsGeneralizedMorphismByCospan
155
156
AsGeneralizedMorphismByCospan( alpha )  attribute
157
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,b)
158
159
The argument is a morphism \alpha: a \rightarrow b in \mathbf{A}. The output
160
is the honest generalized morphism by cospan defined by \alpha.
161
162
2.5-5 GeneralizedMorphismCategoryByCospans
163
164
GeneralizedMorphismCategoryByCospans( A )  attribute
165
Returns: a category
166
167
The argument is an abelian category \mathbf{A}. The output is its
168
generalized morphism category \mathbf{G(A)} by cospans.
169
170
2.5-6 GeneralizedMorphismByCospansObject
171
172
GeneralizedMorphismByCospansObject( a )  attribute
173
Returns: an object in \mathbf{G(A)}
174
175
The argument is an object a in an abelian category \mathbf{A}. The output is
176
the object in the generalized morphism category by cospans whose underlying
177
honest object is a.
178
179
180
2.6 Constructors of lifts of exact functors and natrual (iso)morphisms
181
182
2.6-1 AsGeneralizedMorphismByCospan
183
184
AsGeneralizedMorphismByCospan( F, name )  operation
185
186
Lift the exact functor F to a functor A -> B, where A :=
187
GeneralizedMorphismCategoryByCospans( AsCapCategory( Source( F ) ) ) and B
188
:= GeneralizedMorphismCategoryByCospans( AsCapCategory( Range( F ) ) ).
189
190
191