GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
1[1X2 [33X[0;0YGeneralized Morphism Category by Cospans[133X[101X234[1X2.1 [33X[0;0YGAP Categories[133X[101X56[1X2.1-1 IsGeneralizedMorphismCategoryByCospansObject[101X78[29X[2XIsGeneralizedMorphismCategoryByCospansObject[102X( [3Xobject[103X ) [32X filter9[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1011[33X[0;0YThe GAP category of objects in the generalized morphism category by cospans.[133X1213[1X2.1-2 IsGeneralizedMorphismByCospan[101X1415[29X[2XIsGeneralizedMorphismByCospan[102X( [3Xobject[103X ) [32X filter16[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1718[33X[0;0YThe GAP category of morphisms in the generalized morphism category by19cospans.[133X202122[1X2.2 [33X[0;0YProperties[133X[101X2324[1X2.2-1 HasIdentityAsReversedArrow[101X2526[29X[2XHasIdentityAsReversedArrow[102X( [3Xalpha[103X ) [32X property27[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2829[33X[0;0YThe argument is a generalized morphism [23X\alpha[123X by a cospan [23Xa \rightarrow b30\leftarrow c[123X. The output is [10Xtrue[110X if [23Xb \leftarrow c[123X is congruent to an31identity morphism, [10Xfalse[110X otherwise.[133X323334[1X2.3 [33X[0;0YAttributes[133X[101X3536[1X2.3-1 UnderlyingHonestObject[101X3738[29X[2XUnderlyingHonestObject[102X( [3Xa[103X ) [32X attribute39[6XReturns:[106X [33X[0;10Yan object in [23X\mathbf{A}[123X[133X4041[33X[0;0YThe argument is an object [23Xa[123X in the generalized morphism category by cospans.42The output is its underlying honest object.[133X4344[1X2.3-2 Arrow[101X4546[29X[2XArrow[102X( [3Xalpha[103X ) [32X attribute47[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{A}}(a,c)[123X[133X4849[33X[0;0YThe argument is a generalized morphism [23X\alpha[123X by a cospan [23Xa \rightarrow b50\leftarrow c[123X. The output is its arrow [23Xa \rightarrow b[123X.[133X5152[1X2.3-3 ReversedArrow[101X5354[29X[2XReversedArrow[102X( [3Xalpha[103X ) [32X attribute55[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{A}}(c,b)[123X[133X5657[33X[0;0YThe argument is a generalized morphism [23X\alpha[123X by a cospan [23Xa \rightarrow b58\leftarrow c[123X. The output is its reversed arrow [23Xb \leftarrow c[123X.[133X5960[1X2.3-4 NormalizedCospanTuple[101X6162[29X[2XNormalizedCospanTuple[102X( [3Xalpha[103X ) [32X attribute63[6XReturns:[106X [33X[0;10Ya pair of morphisms in [23X\mathbf{A}[123X.[133X6465[33X[0;0YThe argument is a generalized morphism [23X\alpha: a \rightarrow b[123X by a cospan.66The output is its normalized cospan pair [23X(a \rightarrow d, d \leftarrow b)[123X.[133X6768[1X2.3-5 PseudoInverse[101X6970[29X[2XPseudoInverse[102X( [3Xalpha[103X ) [32X attribute71[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(b,a)[123X[133X7273[33X[0;0YThe argument is a generalized morphism [23X\alpha: a \rightarrow b[123X by a cospan.74The output is its pseudo inverse [23Xb \rightarrow a[123X.[133X7576[1X2.3-6 GeneralizedInverseByCospan[101X7778[29X[2XGeneralizedInverseByCospan[102X( [3Xalpha[103X ) [32X attribute79[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(b,a)[123X[133X8081[33X[0;0YThe argument is a morphism [23X\alpha: a \rightarrow b \in \mathbf{A}[123X. The82output is its generalized inverse [23Xb \rightarrow a[123X by cospan.[133X8384[1X2.3-7 IdempotentDefinedBySubobjectByCospan[101X8586[29X[2XIdempotentDefinedBySubobjectByCospan[102X( [3Xalpha[103X ) [32X attribute87[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(b,b)[123X[133X8889[33X[0;0YThe argument is a subobject [23X\alpha: a \hookrightarrow b \in \mathbf{A}[123X. The90output is the idempotent [23Xb \rightarrow b \in \mathbf{G(A)}[123X by cospan defined91by [23X\alpha[123X.[133X9293[1X2.3-8 IdempotentDefinedByFactorobjectByCospan[101X9495[29X[2XIdempotentDefinedByFactorobjectByCospan[102X( [3Xalpha[103X ) [32X attribute96[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(b,b)[123X[133X9798[33X[0;0YThe argument is a factorobject [23X\alpha: b \twoheadrightarrow a \in99\mathbf{A}[123X. The output is the idempotent [23Xb \rightarrow b \in \mathbf{G(A)}[123X100by cospan defined by [23X\alpha[123X.[133X101102[1X2.3-9 NormalizedCospan[101X103104[29X[2XNormalizedCospan[102X( [3Xalpha[103X ) [32X attribute105[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(a,b)[123X[133X106107[33X[0;0YThe argument is a generalized morphism [23X\alpha: a \rightarrow b[123X by a cospan.108The output is its normalization by cospan.[133X109110111[1X2.4 [33X[0;0YOperations[133X[101X112113[1X2.4-1 GeneralizedMorphismFromFactorToSubobjectByCospan[101X114115[29X[2XGeneralizedMorphismFromFactorToSubobjectByCospan[102X( [3Xbeta[103X, [3Xalpha[103X ) [32X operation116[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(c,a)[123X[133X117118[33X[0;0YThe arguments are a a factorobject [23X\beta: b \twoheadrightarrow c[123X, and a119subobject [23X\alpha: a \hookrightarrow b[123X. The output is the generalized120morphism by cospan from the factorobject to the subobject.[133X121122123[1X2.5 [33X[0;0YConstructors[133X[101X124125[1X2.5-1 GeneralizedMorphismByCospan[101X126127[29X[2XGeneralizedMorphismByCospan[102X( [3Xalpha[103X, [3Xbeta[103X ) [32X operation128[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(a,c)[123X[133X129130[33X[0;0YThe arguments are morphisms [23X\alpha: a \rightarrow b[123X and [23X\beta: c \rightarrow131b[123X in [23X\mathbf{A}[123X. The output is a generalized morphism by cospan with arrow132[23X\alpha[123X and reversed arrow [23X\beta[123X.[133X133134[1X2.5-2 GeneralizedMorphismByCospan[101X135136[29X[2XGeneralizedMorphismByCospan[102X( [3Xalpha[103X, [3Xbeta[103X, [3Xgamma[103X ) [32X operation137[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(a,d)[123X[133X138139[33X[0;0YThe arguments are morphisms [23X\alpha: a \leftarrow b[123X, [23X\beta: b \rightarrow c[123X,140and [23X\gamma: c \leftarrow d[123X in [23X\mathbf{A}[123X. The output is a generalized141morphism by cospan defined by the composition the given three arrows142regarded as generalized morphisms.[133X143144[1X2.5-3 GeneralizedMorphismByCospanWithSourceAid[101X145146[29X[2XGeneralizedMorphismByCospanWithSourceAid[102X( [3Xalpha[103X, [3Xbeta[103X ) [32X operation147[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(a,c)[123X[133X148149[33X[0;0YThe arguments are morphisms [23X\alpha: a \leftarrow b[123X, and [23X\beta: b \rightarrow150c[123X in [23X\mathbf{A}[123X. The output is a generalized morphism by cospan defined by151the composition the given two arrows regarded as generalized morphisms.[133X152153[1X2.5-4 AsGeneralizedMorphismByCospan[101X154155[29X[2XAsGeneralizedMorphismByCospan[102X( [3Xalpha[103X ) [32X attribute156[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(a,b)[123X[133X157158[33X[0;0YThe argument is a morphism [23X\alpha: a \rightarrow b[123X in [23X\mathbf{A}[123X. The output159is the honest generalized morphism by cospan defined by [23X\alpha[123X.[133X160161[1X2.5-5 GeneralizedMorphismCategoryByCospans[101X162163[29X[2XGeneralizedMorphismCategoryByCospans[102X( [3XA[103X ) [32X attribute164[6XReturns:[106X [33X[0;10Ya category[133X165166[33X[0;0YThe argument is an abelian category [23X\mathbf{A}[123X. The output is its167generalized morphism category [23X\mathbf{G(A)}[123X by cospans.[133X168169[1X2.5-6 GeneralizedMorphismByCospansObject[101X170171[29X[2XGeneralizedMorphismByCospansObject[102X( [3Xa[103X ) [32X attribute172[6XReturns:[106X [33X[0;10Yan object in [23X\mathbf{G(A)}[123X[133X173174[33X[0;0YThe argument is an object [23Xa[123X in an abelian category [23X\mathbf{A}[123X. The output is175the object in the generalized morphism category by cospans whose underlying176honest object is [23Xa[123X.[133X177178179[1X2.6 [33X[0;0YConstructors of lifts of exact functors and natrual (iso)morphisms[133X[101X180181[1X2.6-1 AsGeneralizedMorphismByCospan[101X182183[29X[2XAsGeneralizedMorphismByCospan[102X( [3XF[103X, [3Xname[103X ) [32X operation184185[33X[0;0YLift the [13Xexact[113X functor [3XF[103X to a functor [22XA -> B[122X, where [22XA :=[122X186[10XGeneralizedMorphismCategoryByCospans( AsCapCategory( Source( [110X[3XF[103X[10X ) ) )[110X and [22XB187:=[122X [10XGeneralizedMorphismCategoryByCospans( AsCapCategory( Range( [110X[3XF[103X[10X ) ) )[110X.[133X188189190191