Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563501 views
1
2
3 Generalized Morphism Category by Spans
3
4
5
3.1 GAP Categories
6
7
3.1-1 IsGeneralizedMorphismCategoryBySpansObject
8
9
IsGeneralizedMorphismCategoryBySpansObject( object )  filter
10
Returns: true or false
11
12
The GAP category of objects in the generalized morphism category by spans.
13
14
3.1-2 IsGeneralizedMorphismBySpan
15
16
IsGeneralizedMorphismBySpan( object )  filter
17
Returns: true or false
18
19
The GAP category of morphisms in the generalized morphism category by spans.
20
21
22
3.2 Properties
23
24
3.2-1 HasIdentityAsReversedArrow
25
26
HasIdentityAsReversedArrow( alpha )  property
27
Returns: true or false
28
29
The argument is a generalized morphism \alpha by a span a \leftarrow b
30
\rightarrow c. The output is true if a \leftarrow b is congruent to an
31
identity morphism, false otherwise.
32
33
34
3.3 Attributes
35
36
3.3-1 UnderlyingHonestObject
37
38
UnderlyingHonestObject( a )  attribute
39
Returns: an object in \mathbf{A}
40
41
The argument is an object a in the generalized morphism category by spans.
42
The output is its underlying honest object.
43
44
3.3-2 Arrow
45
46
Arrow( alpha )  attribute
47
Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}(b,c)
48
49
The argument is a generalized morphism \alpha by a span a \leftarrow b
50
\rightarrow c. The output is its arrow b \rightarrow c.
51
52
3.3-3 ReversedArrow
53
54
ReversedArrow( alpha )  attribute
55
Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}(b,a)
56
57
The argument is a generalized morphism \alpha by a span a \leftarrow b
58
\rightarrow c. The output is its reversed arrow a \leftarrow b.
59
60
3.3-4 NormalizedSpanTuple
61
62
NormalizedSpanTuple( alpha )  attribute
63
Returns: a pair of morphisms in \mathbf{A}.
64
65
The argument is a generalized morphism \alpha: a \rightarrow b by a span.
66
The output is its normalized span pair (a \leftarrow d, d \rightarrow b).
67
68
3.3-5 PseudoInverse
69
70
PseudoInverse( alpha )  attribute
71
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,a)
72
73
The argument is a generalized morphism \alpha: a \rightarrow b by a span.
74
The output is its pseudo inverse b \rightarrow a.
75
76
3.3-6 GeneralizedInverseBySpan
77
78
GeneralizedInverseBySpan( alpha )  attribute
79
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,a)
80
81
The argument is a morphism \alpha: a \rightarrow b \in \mathbf{A}. The
82
output is its generalized inverse b \rightarrow a by span.
83
84
3.3-7 IdempotentDefinedBySubobjectBySpan
85
86
IdempotentDefinedBySubobjectBySpan( alpha )  attribute
87
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,b)
88
89
The argument is a subobject \alpha: a \hookrightarrow b \in \mathbf{A}. The
90
output is the idempotent b \rightarrow b \in \mathbf{G(A)} by span defined
91
by \alpha.
92
93
3.3-8 IdempotentDefinedByFactorobjectBySpan
94
95
IdempotentDefinedByFactorobjectBySpan( alpha )  attribute
96
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,b)
97
98
The argument is a factorobject \alpha: b \twoheadrightarrow a \in
99
\mathbf{A}. The output is the idempotent b \rightarrow b \in \mathbf{G(A)}
100
by span defined by \alpha.
101
102
3.3-9 NormalizedSpan
103
104
NormalizedSpan( alpha )  attribute
105
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,b)
106
107
The argument is a generalized morphism \alpha: a \rightarrow b by a span.
108
The output is its normalization by span.
109
110
111
3.4 Operations
112
113
3.4-1 GeneralizedMorphismFromFactorToSubobjectBySpan
114
115
GeneralizedMorphismFromFactorToSubobjectBySpan( beta, alpha )  operation
116
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(c,a)
117
118
The arguments are a a factorobject \beta: b \twoheadrightarrow c, and a
119
subobject \alpha: a \hookrightarrow b. The output is the generalized
120
morphism by span from the factorobject to the subobject.
121
122
123
3.5 Constructors
124
125
3.5-1 GeneralizedMorphismBySpan
126
127
GeneralizedMorphismBySpan( alpha, beta )  operation
128
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,b)
129
130
The arguments are morphisms \alpha: a \leftarrow c and \beta: c \rightarrow
131
b in \mathbf{A}. The output is a generalized morphism by span with arrow
132
\beta and reversed arrow \alpha.
133
134
3.5-2 GeneralizedMorphismBySpan
135
136
GeneralizedMorphismBySpan( alpha, beta, gamma )  operation
137
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,d)
138
139
The arguments are morphisms \alpha: a \leftarrow b, \beta: b \rightarrow c,
140
and \gamma: c \leftarrow d in \mathbf{A}. The output is a generalized
141
morphism by span defined by the composition the given three arrows regarded
142
as generalized morphisms.
143
144
3.5-3 GeneralizedMorphismBySpanWithRangeAid
145
146
GeneralizedMorphismBySpanWithRangeAid( alpha, beta )  operation
147
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,c)
148
149
The arguments are morphisms \alpha: a \rightarrow b, and \beta: b \leftarrow
150
c in \mathbf{A}. The output is a generalized morphism by span defined by the
151
composition the given two arrows regarded as generalized morphisms.
152
153
3.5-4 AsGeneralizedMorphismBySpan
154
155
AsGeneralizedMorphismBySpan( alpha )  attribute
156
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,b)
157
158
The argument is a morphism \alpha: a \rightarrow b in \mathbf{A}. The output
159
is the honest generalized morphism by span defined by \alpha.
160
161
3.5-5 GeneralizedMorphismCategoryBySpans
162
163
GeneralizedMorphismCategoryBySpans( A )  attribute
164
Returns: a category
165
166
The argument is an abelian category \mathbf{A}. The output is its
167
generalized morphism category \mathbf{G(A)} by spans.
168
169
3.5-6 GeneralizedMorphismBySpansObject
170
171
GeneralizedMorphismBySpansObject( a )  attribute
172
Returns: an object in \mathbf{G(A)}
173
174
The argument is an object a in an abelian category \mathbf{A}. The output is
175
the object in the generalized morphism category by spans whose underlying
176
honest object is a.
177
178
179