Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563501 views
1
2
7 Serre Quotients
3
4
Serre quotients are implemented using generalized morphisms. A Serre
5
quotient category is the quotient of an abelian category A by a thick
6
subcategory C. The objects of the quotient are the objects from A, the
7
morphisms are a limit construction. In the implementation those morphisms
8
are modeled by generalized morphisms, and therefore there are, like in the
9
generalized morphism case, three types of Serre quotients.
10
11
12
7.1 General operations
13
14
As in the generalized morphism case, the generic constructors depend on the
15
generalized morphism standard. Please note that for implementations the
16
specialized constructors should be used.
17
18
7.1-1 IsSerreQuotientCategoryObject
19
20
IsSerreQuotientCategoryObject( arg )  filter
21
Returns: true or false
22
23
The category of objects in the category of Serre quotients. For actual
24
objects this needs to be specialized.
25
26
7.1-2 IsSerreQuotientCategoryMorphism
27
28
IsSerreQuotientCategoryMorphism( arg )  filter
29
Returns: true or false
30
31
The category of morphisms in the category of Serre quotients. For actual
32
morphisms this needs to be specialized.
33
34
7.1-3 SerreQuotientCategory
35
36
SerreQuotientCategory( A, func[, name] )  operation
37
Returns: a CAP category
38
39
Creates a Serre quotient category S with name name out of an Abelian
40
category A. If name is not given, a generic name is constructed out of the
41
name of A. The argument func must be a unary function on the objects of A
42
deciding the membership in the thick subcategory C mentioned above.
43
44
7.1-4 AsSerreQuotientCategoryObject
45
46
AsSerreQuotientCategoryObject( A/C, M )  operation
47
Returns: an object
48
49
Given a Serre quotient category A/C and an object M in A, this constructor
50
returns the corresponding object in the Serre quotient category.
51
52
7.1-5 SerreQuotientCategoryMorphism
53
54
SerreQuotientCategoryMorphism( A/C, phi )  operation
55
Returns: a morphism
56
57
Given a Serre quotient category A/C and a generalized morphism phi in the
58
generalized morphism category A/C is modeled upon, this constructor returns
59
the corresponding morphism in the Serre quotient category.
60
61
7.1-6 SerreQuotientCategoryMorphism
62
63
SerreQuotientCategoryMorphism( A/C, iota, phi, pi )  operation
64
Returns: a morphism
65
66
Given a Serre quotient category A/C and three morphisms \iota: M'
67
\rightarrow M, \phi: M' \rightarrow N' and \pi: N \rightarrow N' this
68
operation contructs a morphism in the Serre quotient category.
69
70
7.1-7 SerreQuotientCategoryMorphism
71
72
SerreQuotientCategoryMorphism( A/C, alpha, beta )  operation
73
Returns: a morphism
74
75
Given a Serre quotient category A/C and two morphisms of the form \alpha: X
76
\rightarrow M and \beta: X \rightarrow N or \alpha: M \rightarrow X and
77
\beta: N \rightarrow X, this operation constructs the corresponding morphism
78
in the Serre quotient category. This operation is only implemented if A/C is
79
modeled upon a span generalized morphism category in the first option or
80
upon a cospan category in the second.
81
82
7.1-8 SerreQuotientCategoryMorphismWithSourceAid
83
84
SerreQuotientCategoryMorphismWithSourceAid( A/C, alpha, beta )  operation
85
Returns: a morphism
86
87
Given a Serre quotient category A/C and two morphisms \alpha: M \rightarrow
88
X and \beta: X \rightarrow N this operation constructs the corresponding
89
morphism in the Serre quotient category.
90
91
7.1-9 SerreQuotientCategoryMorphismWithRangeAid
92
93
SerreQuotientCategoryMorphismWithRangeAid( A/C, alpha, beta )  operation
94
Returns: a morphism
95
96
Given a Serre quotient category A/C and two morphisms \alpha: X \rightarrow
97
M and \beta: X \rightarrow N this operation constructs the corresponding
98
morphism in the Serre quotient category.
99
100
7.1-10 AsSerreQuotientCategoryMorphism
101
102
AsSerreQuotientCategoryMorphism( A/C, phi )  operation
103
Returns: a morphism
104
105
Given a Serre quotient category A/C and a morphism phi in A, this
106
constructor returns the corresponding morphism in the Serre quotient
107
category.
108
109
7.1-11 SubcategoryMembershipTestFunctionForSerreQuotient
110
111
SubcategoryMembershipTestFunctionForSerreQuotient( C )  attribute
112
Returns: a function
113
114
When a Serre quotient category is created, a membership function for the
115
subcategory is given. This attribute stores and returns this function
116
117
7.1-12 UnderlyingHonestCategory
118
119
UnderlyingHonestCategory( A/C )  attribute
120
Returns: a category
121
122
For a Serre quotient category A/C this attribute returns the category A.
123
124
7.1-13 UnderlyingGeneralizedMorphismCategory
125
126
UnderlyingGeneralizedMorphismCategory( A/C )  attribute
127
Returns: a category
128
129
For a Serre quotient category A/C this attribute returns generalized
130
morphism category the quotient is modelled upon.
131
132
7.1-14 UnderlyingGeneralizedObject
133
134
UnderlyingGeneralizedObject( M )  attribute
135
Returns: an object
136
137
For an object M in the Serre quotient category A/C this attribute returns
138
the corresponding object in the generalized morphism category the quotient
139
is modelled upon.
140
141
7.1-15 UnderlyingHonestObject
142
143
UnderlyingHonestObject( M )  attribute
144
Returns: an object
145
146
For an object M in the Serre quotient category A/C this attribute returns
147
the corresponding object in A.
148
149
7.1-16 UnderlyingGeneralizedMorphism
150
151
UnderlyingGeneralizedMorphism( phi )  attribute
152
Returns: a morphism
153
154
For a morphism phi in the Serre quotient category A/C this attribute returns
155
the corresponding generalized morphism in the generalized morphism category
156
the quotient is modelled upon.
157
158
7.1-17 CanonicalProjection
159
160
CanonicalProjection( A/C )  attribute
161
Returns: a functor
162
163
Given a Serre quotient category A/C, this operation returns the canonical
164
projection functor  A \rightarrow A/C .
165
166
167
7.2 Serre quotients by cospans
168
169
7.2-1 SerreQuotientCategoryByCospans
170
171
SerreQuotientCategoryByCospans( A, func[, name] )  operation
172
Returns: a CAP category
173
174
Creates a Serre quotient category S with name name out of an Abelian
175
category A. The Serre quotient category will be modeled upon the generalized
176
morphisms by cospans category of A If name is not given, a generic name is
177
constructed out of the name of A. The argument func must be a unary function
178
on the objects of A deciding the membership in the thick subcategory C
179
mentioned above.
180
181
7.2-2 AsSerreQuotientCategoryByCospansObject
182
183
AsSerreQuotientCategoryByCospansObject( A/C, M )  operation
184
Returns: an object
185
186
Given a Serre quotient category A/C modeled by cospans and an object M in A,
187
this constructor returns the corresponding object in the Serre quotient
188
category.
189
190
7.2-3 SerreQuotientCategoryByCospansMorphism
191
192
SerreQuotientCategoryByCospansMorphism( A/C, phi )  operation
193
Returns: a morphism
194
195
Given a Serre quotient category A/C modeled by cospans and a generalized
196
morphism phi in the generalized morphism category A/C is modeled upon, this
197
constructor returns the corresponding morphism in the Serre quotient
198
category.
199
200
7.2-4 SerreQuotientCategoryByCospansMorphism
201
202
SerreQuotientCategoryByCospansMorphism( A/C, iota, phi, pi )  operation
203
Returns: a morphism
204
205
Given a Serre quotient category A/C modeled by cospans and three morphisms
206
\iota: M' \rightarrow M, \phi: M' \rightarrow N' and \pi: N \rightarrow N'
207
this operation contructs a morphism in the Serre quotient category.
208
209
7.2-5 SerreQuotientCategoryByCospansMorphismWithSourceAid
210
211
SerreQuotientCategoryByCospansMorphismWithSourceAid( A/C, alpha, beta )  operation
212
Returns: a morphism
213
214
Given a Serre quotient category A/C modeled by cospans and two morphisms
215
\alpha: M \rightarrow X and \beta: X \rightarrow N this operation constructs
216
the corresponding morphism in the Serre quotient category.
217
218
7.2-6 SerreQuotientCategoryByCospansMorphism
219
220
SerreQuotientCategoryByCospansMorphism( A/C, alpha, beta )  operation
221
Returns: a morphism
222
223
Given a Serre quotient category A/C modeled by cospans and two morphisms
224
\alpha: X \rightarrow M and \beta: X \rightarrow N this operation constructs
225
the corresponding morphism in the Serre quotient category.
226
227
7.2-7 AsSerreQuotientCategoryByCospansMorphism
228
229
AsSerreQuotientCategoryByCospansMorphism( A/C, phi )  operation
230
Returns: a morphism
231
232
Given a Serre quotient category A/C modeled by cospans and a morphism phi in
233
A, this constructor returns the corresponding morphism in the Serre quotient
234
category.
235
236
237
7.3 Serre Quotients by Spans
238
239
7.3-1 SerreQuotientCategoryBySpans
240
241
SerreQuotientCategoryBySpans( A, func[, name] )  operation
242
Returns: a CAP category
243
244
Creates a Serre quotient category S with name name out of an Abelian
245
category A. The Serre quotient category will be modeled upon the generalized
246
morphisms by spans category of A If name is not given, a generic name is
247
constructed out of the name of A. The argument func must be a unary function
248
on the objects of A deciding the membership in the thick subcategory C
249
mentioned above.
250
251
7.3-2 AsSerreQuotientCategoryBySpansObject
252
253
AsSerreQuotientCategoryBySpansObject( A/C, M )  operation
254
Returns: an object
255
256
Given a Serre quotient category A/C modeled by spans and an object M in A,
257
this constructor returns the corresponding object in the Serre quotient
258
category.
259
260
7.3-3 SerreQuotientCategoryBySpansMorphism
261
262
SerreQuotientCategoryBySpansMorphism( A/C, phi )  operation
263
Returns: a morphism
264
265
Given a Serre quotient category A/C modeled by spans and a generalized
266
morphism phi in the generalized morphism category A/C is modeled upon, this
267
constructor returns the corresponding morphism in the Serre quotient
268
category.
269
270
7.3-4 SerreQuotientCategoryBySpansMorphism
271
272
SerreQuotientCategoryBySpansMorphism( A/C, iota, phi, pi )  operation
273
Returns: a morphism
274
275
Given a Serre quotient category A/C modeled by spans and three morphisms
276
\iota: M' \rightarrow M, \phi: M' \rightarrow N' and \pi: N \rightarrow N'
277
this operation contructs a morphism in the Serre quotient category.
278
279
7.3-5 SerreQuotientCategoryBySpansMorphism
280
281
SerreQuotientCategoryBySpansMorphism( A/C, alpha, beta )  operation
282
Returns: a morphism
283
284
Given a Serre quotient category A/C modeled by spans and two morphisms
285
\alpha: M \rightarrow X and \beta: X \rightarrow N this operation constructs
286
the corresponding morphism in the Serre quotient category.
287
288
7.3-6 SerreQuotientCategoryBySpansMorphismWithRangeAid
289
290
SerreQuotientCategoryBySpansMorphismWithRangeAid( A/C, alpha, beta )  operation
291
Returns: a morphism
292
293
Given a Serre quotient category A/C modeled by spans and two morphisms
294
\alpha: X \rightarrow M and \beta: X \rightarrow N this operation constructs
295
the corresponding morphism in the Serre quotient category.
296
297
7.3-7 AsSerreQuotientCategoryBySpansMorphism
298
299
AsSerreQuotientCategoryBySpansMorphism( A/C, phi )  operation
300
Returns: a morphism
301
302
Given a Serre quotient category A/C modeled by spans and a morphism phi in
303
A, this constructor returns the corresponding morphism in the Serre quotient
304
category.
305
306
307
7.4 Serre Quotients modeled by three arrows
308
309
7.4-1 SerreQuotientCategoryByThreeArrows
310
311
SerreQuotientCategoryByThreeArrows( A, func[, name] )  operation
312
Returns: a CAP category
313
314
Creates a Serre quotient category S with name name out of an Abelian
315
category A. The Serre quotient category will be modeled upon the generalized
316
morphisms by three arrows category of A If name is not given, a generic name
317
is constructed out of the name of A. The argument func must be a unary
318
function on the objects of A deciding the membership in the thick
319
subcategory C mentioned above.
320
321
7.4-2 AsSerreQuotientCategoryByThreeArrowsObject
322
323
AsSerreQuotientCategoryByThreeArrowsObject( A/C, M )  operation
324
Returns: an object
325
326
Given a Serre quotient category A/C modeled by three arrows and an object M
327
in A, this constructor returns the corresponding object in the Serre
328
quotient category.
329
330
7.4-3 SerreQuotientCategoryByThreeArrowsMorphism
331
332
SerreQuotientCategoryByThreeArrowsMorphism( A/C, phi )  operation
333
Returns: a morphism
334
335
Given a Serre quotient category A/C modeled by three arrows and a
336
generalized morphism phi in the generalized morphism category A/C is modeled
337
upon, this constructor returns the corresponding morphism in the Serre
338
quotient category.
339
340
7.4-4 SerreQuotientCategoryByThreeArrowsMorphism
341
342
SerreQuotientCategoryByThreeArrowsMorphism( A/C, iota, phi, pi )  operation
343
Returns: a morphism
344
345
Given a Serre quotient category A/C modeled by three arrows and three
346
morphisms \iota: M' \rightarrow M, \phi: M' \rightarrow N' and \pi: N
347
\rightarrow N' this operation contructs a morphism in the Serre quotient
348
category.
349
350
7.4-5 SerreQuotientCategoryByThreeArrowsMorphismWithSourceAid
351
352
SerreQuotientCategoryByThreeArrowsMorphismWithSourceAid( A/C, alpha, beta )  operation
353
Returns: a morphism
354
355
Given a Serre quotient category A/C modeled by three arrows and two
356
morphisms \alpha: M \rightarrow X and \beta: X \rightarrow N this operation
357
constructs the corresponding morphism in the Serre quotient category.
358
359
7.4-6 SerreQuotientCategoryByThreeArrowsMorphismWithRangeAid
360
361
SerreQuotientCategoryByThreeArrowsMorphismWithRangeAid( A/C, alpha, beta )  operation
362
Returns: a morphism
363
364
Given a Serre quotient category A/C modeled by three arrows and two
365
morphisms \alpha: X \rightarrow M and \beta: X \rightarrow N this operation
366
constructs the corresponding morphism in the Serre quotient category.
367
368
7.4-7 AsSerreQuotientCategoryByThreeArrowsMorphism
369
370
AsSerreQuotientCategoryByThreeArrowsMorphism( A/C, phi )  operation
371
Returns: a morphism
372
373
Given a Serre quotient category A/C modeled by three arrows and a morphism
374
phi in A, this constructor returns the corresponding morphism in the Serre
375
quotient category.
376
377
378