GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
############################################################################# ## #W resolutionAccess_SmallGroupRep.gi HAPcryst package Marc Roeder ## ## ## #H @(#)$Id: resolutionAccess_SmallGroupRep.gi, v 0.1.11 2013/10/27 18:31:09 gap Exp $ ## #Y Copyright (C) 2006 Marc Roeder #Y #Y This program is free software; you can redistribute it and/or #Y modify it under the terms of the GNU General Public License #Y as published by the Free Software Foundation; either version 2 #Y of the License, or (at your option) any later version. #Y #Y This program is distributed in the hope that it will be useful, #Y but WITHOUT ANY WARRANTY; without even the implied warranty of #Y MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #Y GNU General Public License for more details. #Y #Y You should have received a copy of the GNU General Public License #Y along with this program; if not, write to the Free Software #Y Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA ## Revision.("/Users/roeder/gap/HAPcryst/HAPcryst/lib/datatypes/resolutionAccess_SmallGroupRep_gi"):= "@(#)$Id: resolutionAccess_SmallGroupRep.gi, v 0.1.11 2013/10/27 18:31:09 gap Exp $"; ############################################################################# ## ## This file implements a representation for HapResolutions of small groups. ## ## The additional feature of this representation is the multiplication ## via a multiplication table. ## Also, the list of group elements R!.elts is a set. So we can do binary ## search occasionally. ## ## Elements of the modules in these resolutions are still pairs of integers. ## ## ############################################################################# ## #O PositionInGroupOfResolutionNC(<resolution>,<g>) #O PositionInGroupOfResolution(<resolution>,<g>) ## ## find the position in <resolution>'s partial list of group elements ## <resolution!.elts>. If <g> is not contained in <resolution!.elts>, it is ## added and the length of <resolution!.elts> is returned. ## ## The SmallGroupRep is consistent. So we just catch. ## InstallMethod(PositionInGroupOfResolutionNC, "For HapResolutions of small groups", [IsHapSmallGroupResolutionRep,IsObject], function(resolution,g) local pos; return PositionSet(resolution!.elts,g); end); InstallMethod(PositionInGroupOfResolution, "For HapResolutions of small groups", [IsHapSmallGroupResolutionRep,IsObject], function(resolution,g) local pos; if not g in GroupOfResolution(resolution) then Error("<g> is not in <resolution>'s group"); fi; return PositionInGroupOfResolutionNC(resolution,g); end); ############################################################################# ## #O MultiplyGroupEltsNC(<resolution>,<x>,<y>) ## ## catch the call and delegate to special method. No conversion needed. ## InstallMethod(MultiplyGroupEltsNC,"for HapResolutions of small groups", [IsHapSmallGroupResolutionRep,IsPosInt,IsPosInt], function(resolution,x,y) return resolution!.multtable[x][y]; end); ############################################################################# ############################################################################# ## ## NO "!"s allowed beyond this point ## ############################################################################# ############################################################################# ############################################################################# ## #O MultiplyFreeZGLetterWithGroupEltNC(<resolution>,<letter>,<g>) ## ## given a pair <letter> of positive integers which represent a generator- ## group element pair, this returns the letter multiplied with the group ## element <g>. ## ## InstallMethod(MultiplyFreeZGLetterWithGroupEltNC,"For HapResolutions of small groups", [IsHapSmallGroupResolutionRep,IsDenseList,IsPosInt], function(resolution,letter,g) local newgroupel; newgroupel:=MultiplyGroupEltsNC(resolution,letter[2],g); return [letter[1],PositionInGroupOfResolution(resolution,newgroupel)]; end);