Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563571 views
#(C) Graham Ellis, 2005-2006

#####################################################################
InstallGlobalFunction(PrimePartDerivedFunctor,
function(G,R,F,n)
local
	C,P, DCRS, DCRS1, DCRSpruned,L,Y,GroupL,
	X, K, gensK, S, f,fx, P1, 
	HP, HK, HPK, HKhomHPK, HPKhomHP, HKhomHP,
	HKx,HPKx, 
	HKxhomHPKx, HPKxhomHP, HKxhomHP, HKhomHKx,  HKhomHP2,
	HPrels, x, y, i,prime, core, conjs, conjelt,CentP,
	HPpres,G1,epi,HPP,rho, bool;


C:=F(R);
#P:=StructuralCopy(R!.group);
P:=Group(SmallGeneratingSet(R!.group));
HP:=GroupHomomorphismByFunction(P,P,x->x);
HP:=EquivariantChainMap(R,R,HP);
HP:=F(HP);
HP:=Homology(HP,n);
HP:=Source(HP);
HPrels:=[Identity(HP)];
if Length(AbelianInvariants(HP))=0 then return []; fi;

P1:=Normalizer(G,P);

prime:=Factors(Order(P))[1];

if not IsPrimeInt(Order(P)) then
DCRS1:=List(DoubleCosetRepsAndSizes(G,P1,P1),x->x[1]);
else
DCRS1:=[];
fi;

if Order(P1)>Order(P) then
Append(DCRS1,Filtered(ReduceGenerators(GeneratorsOfGroup(P1),P1),
x->not x in P));
fi;

core:=[];
for x in P do
if Order(x)=prime then AddSet(core,x); fi;
od;

DCRS:=[];
for x in DCRS1 do  #I've forgotten what all this means!!
for y in core do
if x*y*x^-1 in core then Add(DCRS,x); break; fi;
od;od;
DCRSpruned:=[];

conjs:=[];
conjelt:=[];
for x in DCRS do
Y:=Intersection(P,P^x);
AddSet(conjs,Y);
Append(conjelt,[[x,Y]]);  #An improvement would be to not save all Y (twice!).
od;

for Y in conjs do
L:=Filtered(conjelt,x->x[2]=Y);
L:=List(L,x->x[1]);
GroupL:=Group(L);
Add(DCRSpruned,ReduceGenerators(L,GroupL)); 
od;
DCRSpruned:=Filtered(DCRSpruned,x->Length(x)>0);


for L in DCRSpruned do
K:=Intersection(P,P^L[1]);
gensK:=ReduceGenerators(GeneratorsOfGroup(K),K);
if not Length(gensK)=0 then

G1:=Group(gensK);

if Order(G1)<64 and n<4 then 	##NEED TO FIND AN "OPTIMAL" CHOICE HERE
S:=ResolutionFiniteGroup(gensK,n+1);
S!.group:=Group(SmallGeneratingSet(S!.group));
else
S:=ResolutionNormalSeries(LowerCentralSeries(G1),n+1);
S!.group:=Group(SmallGeneratingSet(S!.group));
fi;


if not (Homology(F(S),n)=[]) then

f:=GroupHomomorphismByFunction(K,P,x->x);

HKhomHPK:=Homology(F(EquivariantChainMap(S,R,f)),n);

#################################rho##################
if "twist" in NamesOfComponents(F(R)) then
rho:=F(R)!.twist; 
else
rho:=function(x) return 1; end;
fi;
#################################rho done#############

HK:=Source(HKhomHPK);

HPK:=Range(HKhomHPK);
HPKhomHP:=GroupHomomorphismByImagesNC(HPK,HP,GeneratorsOfGroup(HPK),
                                                  GeneratorsOfGroup(HP));
HKhomHP:=GroupHomomorphismByFunction(HK,HP,x->
Image(HPKhomHP, Image(HKhomHPK,x) ) );

for X in L do
fx:=GroupHomomorphismByFunction(K,P,g->Image(f,g)^(X^-1));
HKxhomHPKx:=Homology(F(EquivariantChainMap(S,R,fx)),n);
HKx:=Source(HKxhomHPKx);
HPKx:=Parent(Range(HKxhomHPKx));
HPKxhomHP:=GroupHomomorphismByImagesNC(HPKx,HP,GeneratorsOfGroup(HPKx),
                                                  GeneratorsOfGroup(HP));
HKxhomHP:=GroupHomomorphismByFunction(HKx,HP,x->
Image(HPKxhomHP, Image(HKxhomHPKx,x) )^rho(X) );
HKhomHKx:=GroupHomomorphismByImagesNC(HK,HKx,GeneratorsOfGroup(HK),GeneratorsOfGroup(HKx));
HKhomHP2:=GroupHomomorphismByFunction(HK,HP,a->
Image(HKxhomHP, Image(HKhomHKx,a)));

for x in GeneratorsOfGroup(HK) do
Append(HPrels, [Image(HKhomHP,x)*Image(HKhomHP2,x)^-1]);
od;

od;
fi;
fi;
od;

if IsPcpGroup(HP)  then 
HPP:=HP/Group(SSortedList(HPrels));
else
epi:=EpimorphismNilpotentQuotient(HP,1);
HPP:=Range(epi)/Group(SSortedList(List(HPrels,x->Image(epi,x))));
#HPP:=HP/Group(SSortedList(HPrels));
fi;

return AbelianInvariants(HPP);
end);
#####################################################################