GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
#(C) Graham Ellis, October 2005 ##################################################################### InstallGlobalFunction(NonabelianTensorProduct_Inf, function(arg) local AG, AH, SizeOrList, gensAG, NiceGensAG, gensAH, NiceGensAH, G,G1, gensG, relsG, H, H1, gensH, relsH, BG, GhomBG, BG1homF, BG2homF, BH, HhomBH, F, relsT, gensF, gensF1, gensF2, AF, FhomAF, AGhomG, AHhomH, G1homF, G2homF, AG1homF, AG2homF, SF, gensSF, gensSFG, FhomSF, AFhomSF, AG1homSF, AG2homSF, SFhomAG, AFhomSSF,SSF,gensSF2,SSFhomSF, TensorSquare, delta, Trans, CrossedPairing, AGhomBG, BGhomAG, BHhomAH, i,v,w,x,y,z; AG:=arg[1]; AH:=arg[2]; # AG and SF are groups whose elements are essentially enumerated. AG is # isomorphic to G and to BG. SF is equal to F/relsT and AF. Two isomorphic # copies of AG lie inside SF, and the homomorphisms AG1homSF, AG2homSF # identify the two copies. delta is the commutator map from TensorSquare to AG. # The homomorphisms GhomBG, AGhomG, FhomSF, FhomAF, AFhomSF are all # isomorphisms. The relationship between the groups is summarized in the # following diagrams: AG->G->BG->F->AF->SF and SF->AG. gensAG:=GeneratorsOfGroup(AG); NiceGensAG:=gensAG; AGhomG:=IsomorphismFpGroup(AG); G:=Range(AGhomG); gensAH:=GeneratorsOfGroup(AH); NiceGensAH:=gensAH; AHhomH:=IsomorphismFpGroup(AH); H:=Range(AHhomH); gensG:=FreeGeneratorsOfFpGroup(G); relsG:=RelatorsOfFpGroup(G); BG:=FreeGroupOfFpGroup(G); BGhomAG:=GroupHomomorphismByImagesNC(BG,AG, GeneratorsOfGroup(BG),gensAG); gensH:=FreeGeneratorsOfFpGroup(H); relsH:=RelatorsOfFpGroup(H); BH:=FreeGroupOfFpGroup(H); BHhomAH:=GroupHomomorphismByImagesNC(BH,AH, GeneratorsOfGroup(BH),gensAH); F:=FreeGroup(Length(gensG)+Length(gensH)); gensF:=GeneratorsOfGroup(F); gensF1:=[]; gensF2:=[]; for i in [1..Length(gensG)] do Append(gensF1,[gensF[i]]); od; for i in [1..Length(gensH)] do Append(gensF2,[gensF[Length(gensG)+i]]); od; BG1homF:=GroupHomomorphismByImagesNC(BG,F,gensG,gensF1); BG2homF:=GroupHomomorphismByImagesNC(BH,F,gensH,gensF2); AG1homF:=GroupHomomorphismByFunction(AG,F,g->Image(BG1homF,PreImagesRepresentative(BGhomAG,g))); AG2homF:=GroupHomomorphismByFunction(AH,F,g->Image(BG2homF,PreImagesRepresentative(BHhomAH,g))); relsT:=[]; for x in relsG do Append(relsT,[Image(BG1homF,x)]); od; for x in relsH do Append(relsT,[Image(BG2homF,x)]); od; for z in NiceGensAG do for x in gensAG do for y in gensAH do v:=Comm(Image(AG1homF,x),Image(AG2homF,y))^Image(AG1homF,z) ; w:=Comm(Image(AG2homF,y^z),Image(AG1homF,x^z) ); Append(relsT,[v*w]); od; od; od; for z in NiceGensAH do for x in gensAG do for y in gensAH do w:=Comm(Image(AG2homF,y^z),Image(AG1homF,x^z) ); v:=Comm(Image(AG1homF,x),Image(AG2homF,y))^Image(AG2homF,z); Append(relsT,[v*w]); od; od; od; relsT:=SSortedList(relsT); #####################################################################IF AF:=F/relsT; FhomAF:= GroupHomomorphismByImagesNC(F,AF,GeneratorsOfGroup(F),GeneratorsOfGroup(AF)); AFhomSSF:=IsomorphismSimplifiedFpGroup(AF); SSF:=Image(AFhomSSF); SSFhomSF:=HAP_NqEpimorphismNilpotentQuotient(SSF); SF:=Range(SSFhomSF); gensSF2:=List(GeneratorsOfGroup(AF),x->Image(SSFhomSF,Image(AFhomSSF,x))); AFhomSF:=GroupHomomorphismByImagesNC(AF,SF,GeneratorsOfGroup(AF),gensSF2); FhomSF:= GroupHomomorphismByFunction(F,SF,x->Image(AFhomSF,Image(FhomAF,x)) ); #####################################################################FI AG1homSF:=GroupHomomorphismByFunction(AG,SF,x->Image(FhomSF,Image(AG1homF,x))); AG2homSF:=GroupHomomorphismByFunction(AH,SF,x->Image(FhomSF,Image(AG2homF,x))); #TensorSquare:=Intersection( #NormalClosure(SF,Group(List(GeneratorsOfGroup(AG),x->Image(AG1homSF,x)))), #NormalClosure(SF,Group(List(GeneratorsOfGroup(AG),x->Image(AG2homSF,x)))) #); TensorSquare:=CommutatorSubgroup( Group(List(GeneratorsOfGroup(AG),x->Image(AG1homSF,x))), Group(List(GeneratorsOfGroup(AH),x->Image(AG2homSF,x)))) ; gensSF:=List(gensF,x->Image(FhomSF,x)); gensSFG:=[]; for i in [1..Length(gensAG)] do Append(gensSFG,[gensAG[i]]); od; for i in [1..Length(gensAH)] do Append(gensSFG,[gensAH[i]]); od; SFhomAG:=GroupHomomorphismByImagesNC(SF,AG,gensSF,gensSFG); delta:=GroupHomomorphismByImagesNC(TensorSquare,AG, GeneratorsOfGroup(TensorSquare), List(GeneratorsOfGroup(TensorSquare),x->Image(SFhomAG,x))); ##################################################################### CrossedPairing:=function(x,y) return Comm(Image(AG1homSF,x), Image(AG2homSF,y)); end; ##################################################################### return rec(homomorphism:=delta, pairing:=CrossedPairing); end); #####################################################################