Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563479 views
1
2
4 Localize Rings
3
4
The package LocalizeRingForHomalg defines the classes of local(ized) rings,
5
local ring elements and local matrices. These three objects can be used as
6
data structures defined in MatricesForHomalg on which the homalg project can
7
rely to do homological computations over localized rings.
8
9
A homalg local ring element contains two homalg ring elements, a numerator
10
(--> Numerator (4.3-4)) and a denominator (--> Denominator (4.3-6)). A
11
homalg local matrix contains a global homalg matrix as a numerator (-->
12
Numerator (4.3-5)) and a ring element as a denominator (--> Denominator
13
(4.3-7)). New constructors for ring elements and matrices are
14
HomalgLocalRingElement (4.3-17) and HomalgLocalMatrix (4.3-18) in addition
15
to the standard contructors introduced in other packages of the homalg
16
project.
17
18
The local rings most prominently can be used with methods known from general
19
homalg rings. The methods for doing the computations are presented in the
20
appendix (A), since they are not for external use. The new attributes and
21
operations are documented here.
22
23
Since the objects inplemented here are representations from objects
24
elsewhere in the homalg project (i.e. MatricesForHomalg), we want to stress
25
that there are many other operations in homalg, which can be used in
26
connection with the ones presented here. A few of them can be found in the
27
examples and the appendix of this documentation.
28
29
30
4.1 Category and Representations
31
32
4.1-1 IsHomalgLocalRingRep
33
34
IsHomalgLocalRingRep( R )  Representation
35
Returns: true or false
36
37
The representation of homalg local rings.
38
39
(It is a subrepresentation of the GAP representation
40
IsHomalgRingOrFinitelyPresentedModuleRep.)
41
42
 Code 
43
DeclareRepresentation( "IsHomalgLocalRingRep",
44
 IsHomalgRing
45
 and IsHomalgRingOrFinitelyPresentedModuleRep,
46
 [ "ring" ] );
47

48
49
4.1-2 IsHomalgLocalRingElementRep
50
51
IsHomalgLocalRingElementRep( r )  Representation
52
Returns: true or false
53
54
The representation of elements of homalg local rings.
55
56
(It is a representation of the GAP category IsHomalgRingElement.)
57
58
 Code 
59
DeclareRepresentation( "IsHomalgLocalRingElementRep",
60
 IsHomalgRingElement,
61
 [ "pointer" ] );
62

63
64
4.1-3 IsHomalgLocalMatrixRep
65
66
IsHomalgLocalMatrixRep( A )  Representation
67
Returns: true or false
68
69
The representation of homalg matrices with entries in a homalg local ring.
70
71
(It is a representation of the GAP category IsHomalgMatrix.)
72
73
 Code 
74
DeclareRepresentation( "IsHomalgLocalMatrixRep",
75
 IsHomalgMatrix,
76
 [ ] );
77

78
79
80
4.2 Rings: Attributes
81
82
4.2-1 GeneratorsOfMaximalLeftIdeal
83
84
GeneratorsOfMaximalLeftIdeal( R )  attribute
85
Returns: a homalg matrix
86
87
Returns the generators of the maximal ideal, at which R was created. The
88
generators are given as a column over the associated global ring.
89
90
4.2-2 GeneratorsOfMaximalRightIdeal
91
92
GeneratorsOfMaximalRightIdeal( R )  attribute
93
Returns: a homalg matrix
94
95
Returns the generators of the maximal ideal, at which R was created. The
96
generators are given as a row over the associated global ring.
97
98
99
4.3 Operations and Functions
100
101
4.3-1 AssociatedGlobalRing
102
103
AssociatedGlobalRing( R )  operation
104
Returns: a (global) homalg ring
105
106
The global homalg ring, from which the local ring R was created.
107
108
4.3-2 AssociatedGlobalRing
109
110
AssociatedGlobalRing( r )  operation
111
Returns: a (global) homalg ring
112
113
The global homalg ring, from which the local ring element r was created.
114
115
4.3-3 AssociatedGlobalRing
116
117
AssociatedGlobalRing( mat )  operation
118
Returns: a (global) homalg ring
119
120
The global homalg ring, from which the local matrix mat was created.
121
122
4.3-4 Numerator
123
124
Numerator( r )  operation
125
Returns: a (global) homalg ring element
126
127
The numerator from a local ring element r, which is a homalg ring element
128
from the computation ring.
129
130
4.3-5 Numerator
131
132
Numerator( mat )  operation
133
Returns: a (global) homalg matrix
134
135
The numerator from a local matrix mat, which is a homalg matrix from the
136
computation ring.
137
138
4.3-6 Denominator
139
140
Denominator( r )  operation
141
Returns: a (global) homalg ring element
142
143
The denominator from a local ring element r, which is a homalg ring element
144
from the computation ring.
145
146
4.3-7 Denominator
147
148
Denominator( mat )  operation
149
Returns: a (global) homalg ring element
150
151
The denominator from a local matrix mat, which is a homalg matrix from the
152
computation ring.
153
154
4.3-8 Name
155
156
Name( r )  operation
157
Returns: a string
158
159
The name of the local ring element r.
160
161
4.3-9 SetMatElm
162
163
SetMatElm( mat, i, j, r, R )  operation
164
165
Changes the entry (i,j) of the local matrix mat to the value r. Here R is
166
the (local) homalg ring involved in these computations.
167
168
4.3-10 AddToMatElm
169
170
AddToMatElm( mat, i, j, r, R )  operation
171
172
Changes the entry (i,j) of the local matrix mat by adding the value r to it.
173
Here R is the (local) homalg ring involved in these computations.
174
175
4.3-11 MatElmAsString
176
177
MatElmAsString( mat, i, j, R )  operation
178
Returns: a string
179
180
Returns the entry (i,j) of the local matrix mat as a string. Here R is the
181
(local) homalg ring involved in these computations.
182
183
4.3-12 MatElm
184
185
MatElm( mat, i, j, R )  operation
186
Returns: a local ring element
187
188
Returns the entry (i,j) of the local matrix mat. Here R is the (local)
189
homalg ring involved in these computations.
190
191
4.3-13 Cancel
192
193
Cancel( a, b )  operation
194
Returns: two ring elements
195
196
For a=a'*c and b=b'*c return a' and b'. The exact form of c depends on
197
whether a procedure for gcd computation is included in the ring package.
198
199
4.3-14 LocalizeAt
200
201
LocalizeAt( R, l )  operation
202
Returns: a local ring
203
204
If l is a list of elements of the global ring R generating a maximal ideal,
205
the method creates the corresponding localization of R at the complement of
206
the maximal ideal.
207
208
4.3-15 LocalizeAtZero
209
210
LocalizeAtZero( R )  operation
211
Returns: a local ring
212
213
This method creates the corresponding localization of R at the complement of
214
the maximal ideal generated by the indeterminates ("at zero").
215
216
4.3-16 LocalizePolynomialRingAtZeroWithMora
217
218
LocalizePolynomialRingAtZeroWithMora( R )  operation
219
Returns: a local ring
220
221
This method localizes the ring R at zero and this localized ring is
222
returned. The ring table uses Mora's algorithm as implemented Singular for
223
low level computations.
224
225
4.3-17 HomalgLocalRingElement
226
227
HomalgLocalRingElement( numer, denom, R )  function
228
HomalgLocalRingElement( numer, R )  function
229
Returns: a local ring element
230
231
Creates the local ring element numer/denom or in the second case numer/1 for
232
the local ring R. Both numer and denom may either be a string describing a
233
valid global ring element or from the global ring or computation ring.
234
235
4.3-18 HomalgLocalMatrix
236
237
HomalgLocalMatrix( numer, denom, R )  function
238
HomalgLocalMatrix( numer, R )  function
239
Returns: a local matrix
240
241
Creates the local matrix numer/denom or in the second case numer/1 for the
242
local ring R. Both numer and denom may either be from the global ring or the
243
computation ring.
244
245
246